
Migrating From
Monolithic to

Operational
Databases

Cloud Native

w h i te pa p e r

How Provides

Multi-Cloud Mobility in the Data Layer

YugabyteDB

Table of Contents

Introduction	

The Evolution of Operational Databases	

 Monolithic to Sharded and Distributed	

 Strong Consistency to Eventual Consistency	

 ACID to BASE	

 SQL to NewSQL and NoSQL	

 Relational to Multi-Model	

 On-Premises to Cloud Hosted	

 Rise of Database-as-a-Service (DBaaS)	

 Defining “Cloud Native” for Databases	

Three Challenges of NoSQL Databases	

 Operational Complexity	

 Frustrating Application Development	

 Inconsistent Customer Experiences	

Solving NoSQL Challenges with Distributed SQL	

 Why Distributed SQL?	

 Distributed SQL Database Architecture	

YugabyteDB: Best-in-Class Distributed SQL

for Cloud Native Databases	

 Deployment Flexibility	

 High Performance	

 Operational Simplicity

 Multi-API Query Layer

 Inherently Geo-Distributed

 PostgreSQL Compatibility	

 Security	

 Feature Comparison	

Conclusion

1

2

2

3

4

4

4

5

5

5

6

6

6

7

7

7

8

9

9

9

9

9

9

9

9

9

10

1Migrating From Monolithic to Cloud Native Operational Databases

Introduction
Enterprises large and small are increasingly migrating their
mission-critical applications from legacy, monolithic
architectures running inside on-prem data centers to
modern microservices architectures running on public,
private, or hybrid cloud infrastructure. Application
development and technical operations teams leverage a
multitude of cloud native infrastructure technologies, such
as Docker and Kubernetes, to make this migration possible.

However, one major roadblock to a more accelerated
migration to microservices and cloud infrastructure is an
inability to move the stateful data layer with the stateless
application layer at the same velocity. This stateful data
layer consists of a persistent database and an in-memory
cache that fronts the database. In the context of databases,
it is well known that SQL-based relational databases are not
suitable for dynamic cloud infrastructure. On the other
hand, NoSQL and NewSQL databases look cloud ready from
a distance, but they, too, present significant operational
challenges when run at scale in production.

In this white paper, we highlight the causes and effects of
these industry defining trends, especially in the context of
operational databases. We also introduce YugabyteDB, a
cloud native, strongly consistent, distributed SQL database
built from the ground-up for today’s mission-critical
applications. YugabyteDB provides the much desired cross-
cloud operational mobility in the data layer while
simultaneously making it extremely easy for enterprise
developers to write applications.

The Evolution of Operational
Databases
While application architectures and infrastructures
underwent massive shifts, operational databases powering
mission-critical Online Transaction Processing (OLTP)
applications also experienced significant changes, albeit
more slowly than the application and infrastructure side.

Monolithic to Sharded and Distributed

Relational databases, also known as Structured Query
Language (SQL) databases, have been the de-facto OLTP
database standard for the last 40 years. They are
architecturally monolithic in nature and run on a single node
backed by specialized, high cost hardware with several
problematic consequences. They require painful vertical
hardware scaling as the application’s read/write volume
increases.

Adding high availability entails adding a new independent
database instance and then copying the data over via either
async or sync replication. Async replication, also known as
master-standby, involves replicating committed data from
master to standby periodically. There can be some data loss
when the master fails and the standby hasn’t received some
of the writes yet.

Availability is also not 100% since there is usually downtime
involved in failing over to the standby. Sync replication
guarantees zero data loss using atomic write operations
implemented via protocols such as 2-phase commit.
However, such a system becomes unavailable whenever one
of the two instances is down or there is a network problem
leading to loss of connectivity between the two instances.

Simple sharding, where data is partitioned across
independent databases, is an architectural enhancement
that is added to achieve linear scalability. The application
must become responsible for identifying which shard has
what data. The resulting complexity is often underestimated,
especially as the number of shards grows with changing
business needs. High availability of each shard is still
maintained through async or sync replication, thus adding
another layer of operational complexity. Such sharded
relational databases are often referred to as NewSQL.

On the other hand, NoSQL, which stands for Not Only SQL,
refers to a class of databases that are distributed,
horizontally scalable, sharded and multi- copy replicated by
default. The distributed, multi-copy replicated approach
provides more write and read availability than both SQL and
NewSQL databases. This is because the number of failures
tolerated can be tuned by simply increasing or decreasing
the replication factor, the number of replicas per shard.
NewSQL databases have adopted NoSQL-like distributed
architectures with the goal of providing higher availability
than older generation databases.

2Migrating From Monolithic to Cloud Native Operational Databases

Strong Consistency to Eventual
Consistency

The famous CAP (Consistency, Availability, and Partition-
tolerance) theorem states that network partitions cannot
be avoided in distributed systems. Therefore, whenever
such network partitions arise, the choice is only between
100% consistency and 100% availability (there is no
compromise needed during normal operating conditions).
Since partitions are a non-issue in monolithic relational
databases, there is no trade-off to be made between
consistency and availability. The practical trade-off is lack of
scalability. Sharded NewSQL and distributed NoSQL
databases solve the scalability problem but now are forced
to make a choice between 100% consistency and 100%
availability during network partitions. In practice, this
choice is based on the primary workload type the database
is optimized for.

NewSQL databases are used for traditional “system-of-
record” OLTP applications such as a product catalog where
there are a smaller number of entities being worked on with
a narrow context (such as online checkout). Hence the
motivation for strong consistency, also called immediate
consistency, where data viewed immediately after an
update is consistent for all observers of the entity.

The underlying implementation of strong consistency relies
on various kinds of locks and concurrency control for brief
periods of time. This allows intermediate and incorrect
states of the data that are either avoided altogether or
become invisible to client applications. As expected, these
databases suffer from lower availability and higher latency
during network partitions. NewSQL databases aim for much
higher availability while maintaining strong consistency.

On the other hand, traditional NoSQL databases are
typically used for one of two kinds of applications: Hybrid
Transactional/Analytics Processing (HTAP) and Online
Analytical Processing (OLAP).

Both application types require high write availability and
can tolerate some degree of stale reads, hence the
motivation for eventual consistency. Eventual consistency is
a theoretical guarantee that, provided no new updates to an
entity are made, all reads of the entity will eventually return
the last updated value. In these cases, the inclusion or
exclusion of a set of entities is not expected to impact user
experience since the overall number of entities is large.

Given this fundamental unpredictability associated with
eventual consistency, NoSQL databases are not
recommended for mission-critical OLTP and HTAP
applications where guaranteed Service Level Agreements
(SLAs) are mandatory. Critics consider eventual consistency
to be “hopeful” consistency given the hopeful and arguably
unrealistic requirement of avoiding new updates altogether.

Traditional NoSQL databases with their eventually
consistent cores are increasingly tuned for strong
consistency using quorum-based approaches. However,
these band-aid solutions come with a clear decrease in
performance as well as a significant increase in operational
and end user pain. Even the large technology companies
that originally served as early NoSQL adopters are now
forced to rethink their ever-increasing engineering
investment.

Node B

X

Node C

Xold

Data Center 1

Data Center 2

Read XWrite X

Read Xold

3Migrating From Monolithic to Cloud Native Operational Databases

Node A

X

ACID to BASE

The consistency and replication architecture of a database’s
server-side has a direct impact on how client transactions
are served. Arguably the most important reason behind the
massive adoption of strongly consistent relational
databases is the notion of

 guarantees with respect to client
transactions. These transactions make it simple for
developers to reason about and control (by tuning isolation
levels) the write/read behaviors expected in their
applications.

Applying the lock-based implementation approach behind
ACID transactions to distributed NoSQL databases would
make them unavailable for extended periods of time. This is
unacceptable given the primary need of high availability.

But NoSQL databases instead support Basically Available
Soft-state Eventually Consistent (BASE) client
transactions where higher read and write availability is
favored even if the data is stale or dirty. BASE transactions,
with isolation levels worse than READ UNCOMMITTED, are
unfit to be used in system-of-record applications since it’s
impossible to say what’s the correct value of a record at a
given instant of time.

Atomicity, Consistency, Isolation
and Durablity (ACID)

SQL to NewSQL and NoSQL

The above server-side and client-side architectural
differences mean that NoSQL databases cannot simply
adopt SQL as their client interaction language. SQL allows
for multiple rows to be updated and queried (sometimes
using JOINs) at the same time.

Unfortunately, those rows are not guaranteed to be in the
same shard in NoSQL databases, and reducing availability
to coordinate atomicity in multi-shard transactions is not an
option. NoSQL databases thus do not support JOINs and
have a client language of their own. For example, Apache
Cassandra has a SQL variant called Cassandra Query
Language, and MongoDB has its proprietary

CRUD operations.

NewSQL databases aim to support as much of the
traditional SQL syntax as possible including JOINs. These
databases are essentially abstraction layers running on top
of multiple independent monolithic relational databases.
There are also a few use case specific databases for
streaming data analytics. The choice of SQL for such non-
OLTP use cases is primarily driven by the need to take
advantage of SQL’s popularity among developers.

4Migrating From Monolithic to Cloud Native Operational Databases

Relational to Multi-Model

Relational databases work well for structured data that gets
organized as rows in tables with each column having a
strongly typed value. Such a rigid schema approach does
not work well for applications with semi-structured or
unstructured data needs. NoSQL databases solve this
problem by providing either a more flexible schema (e.g.,
column-oriented databases such as Apache Cassandra and
Apache HBase) or going schema-less (e.g., document
databases such as MongoDB). There are also key-value
stores (e.g., Redis) with in-memory data structures but no
concept of a persistent store or schema as such.

https://www.yugabyte.com/tech/distributed-acid-transactions/
https://www.yugabyte.com/tech/distributed-acid-transactions/

On-Premises to Cloud Hosted

The distributed architecture and horizontal scaling aspects
of NoSQL databases make them well suited for hosted
deployments in the cloud where instances can be
dynamically provisioned. On the other hand, the monolithic
architecture and vertical scaling requirements of relational
databases mean that their infrastructure needs are less
dynamic. Although they can be hosted in the cloud, on-
premises data centers with static capacity work just fine for
such cases.

Rise of Database-as-a-Service (DBaaS)

In the last few years, both leading cloud providers and
major database vendors have introduced Database-as-a-
Service (DBaaS) offerings. The common theme is that the
operational complexity of managing and monitoring the
database is no longer the customer’s concern. Operations
are now the provider’s responsibility and the cost is
included in the price of the offering. In many cases, the
offering is simply a hosted version of an open source
database such as Amazon RDS/Aurora or MongoDB Atlas. In
a select few cases, the cloud providers also offer proprietary
databases as a service, such as Amazon DynamoDB.

Defining “Cloud Native” for Databases

Cloud native is fast becoming a reality for the application
layer. However, the same cannot be said about the data
layer powering the application. Cloud hosted NoSQL and
NewSQL databases can be horizontally deployed on cloud
infrastructure but they do not abstract away the various
cloud providers while keeping the core database
functionality uniform and reliable. Below are the five
defining characteristics of a cloud native database.

Extreme elasticity: Scale clusters up and down
speedily and reliably.

Geo-redundant, always-on availability: Easily
create multi-AZ/multi-region clusters and then
expand or shrink availability zones or regions
anytime, while remaining resilient to unplanned
failures and planned upgrades.

Note that DBaaS offerings abstract out the underlying
cloud infrastructure and are being marketed as “cloud
native.” However, enterprises do not consider these
services truly cloud native given the inherent cloud vendor
lock-in and loss of control on data and servers that comes
along with any such service. Additionally, deploying
traditional NoSQL or NewSQL databases on stateful
containers (such as Kubernetes StatefulSets) solves the
cloud provider abstraction problem, but it does not serve
the desired end goal of agile development and operations.
This is because these traditional databases are not built on
a cloud native foundation. The data storage and
replication layers of these databases lack the availability
and mobility necessary to exploit the full potential of
orchestration-ready stateful containers.

Hardware flexibility: Seamlessly move from one
type of compute and storage to another for cost and
performance reasons.

Multi-cloud mobility: Avoid cloud lock-in by
moving to or co-existing on multiple cloud
providers.

Data placement policies: Define and enforce geo-
specific data residency controls without impacting
the app

5Migrating From Monolithic to Cloud Native Operational Databases

Three Challenges of NoSQL
Databases
In this section, we walk through the three challenges of
using current generation NoSQL databases: operational
complexity, frustrating application development, and
inconsistent customer experiences.

Operational Complexity

As noted in the previous section, databases have evolved to
become cloud hosted but are far from being truly cloud
native. The current operational complexity is painful for
organizations looking to exploit the elasticity and geo-
redundancy of modern cloud infrastructure to its maximum
potential. On top of this, the eventually consistent core of
NoSQL adds hidden costs such as performance-killing
background repairs and unpredictable, memory-intensive
compaction storms. The fact that most enterprises also run
an independent caching layer (such as Redis or Memcache)
alongside their persistent database simply makes all
operational challenges twice as hard.

In context of the original need to move the data layer
through the same phases and at the same velocity as the
application layer, the above operational challenges simply
make such moves next to impossible. If such a move is
forced on operations teams, then it means business loss
manifested as both unpredictable downtimes and manual,
error-prone war rooms.

Frustrating Application Development

Application developers desire the simplicity of ACID
transactions so that they can easily reason about the read/
write behavior of their database client code. Relational
databases support multi-row ACID where multiple related
rows can be updated or read in an all-or-nothing and
consistent manner. However, most NoSQL databases do not
even support single-row ACID transactions, since eventual
consistency leads to the “C” getting compromised at the
remote replicas.

The net result is extremely long development and test cycles
to handle all the corner cases necessary to achieve desired
read/write behavior. For example, the answer to “what value
will be read after a failed write?” varies wildly among NoSQL
databases. Additionally, most NoSQL databases either do not
support secondary indexes or have extremely poor
performing secondary indexes (as a direct result of accessing
all shards). Loss of this critical feature also slows down
development since complex workarounds must be designed,
implemented, and tested.

Many NoSQL databases are starting to realize the advantages
of strong consistency and are allowing their eventually
consistent systems to be tuned to quorum-based strong
consistency settings. However, it is well proven that this form
of tunable consistency is not truly strong for many situations,
including dirty reads after failed writes and unpredictable
reads after the last writer wins. Developers using this
approach are forced to spend even more time testing their
applications to guarantee predictable behaviors.

6Migrating From Monolithic to Cloud Native Operational Databases

Inconsistent Customer Experiences

Even with all the tuning efforts from developers to build
strongly consistent OLTP/HTAP applications on eventually
consistent NoSQL databases, error conditions are
unavoidable. During these error conditions, inconsistency is
exposed to end customers.

For example, a few items were deleted from a retailer’s
product catalog since they were no-longer-available.
However, those deletes were not honored when the data
was presented to the customer, since the node from which
that data was served did not have the deletes applied yet.
Another example would be ignoring some of the time-series
metric data for calculating aggregates in alerting for time-
series monitoring and Internet of Things (IoT) use cases.
Waking up team members in the early morning hours based
on incorrect data should be avoided. Similarly, if a user’s
privacy preferences are not immediately honored, there is a
possibility her actions will appear to other users in the same
account.

Solving NoSQL Challenges
with Distributed SQL
A distributed SQL database is a single logical relational
database deployed on a cluster of servers. The database
automatically replicates and distributes data across
multiple servers. These databases are strongly consistent
and support consistency across availability and geographic
zones in the cloud.

At a minimum, a distributed SQL database has the following
characteristics�

� A SQL API for accessing and manipulating data and
object�

� Automatic distribution of data across nodes in a cluste�

� Automatic replication of data in a strongly consistent
manne�

� Support for distributed query execution so clients do not
need to know about the underlying distribution of dat�

� Support for distributed ACID transactions

Why Distributed SQL?

Business innovation is putting pressure on traditional
systems of record. This is forcing companies to deliver high-
value applications and services more quickly while lowering
IT costs and reducing risk through compliance.

But these applications—in the form of microservices, born-
in-the-cloud applications, and edge and IoT workloads—
require a new class of database that is:

Resilient to failures and continuously available:
Critical services remain available during node, zone,
region, and data center failures as well as system
maintenance with fast failover

Horizontally scalable: Operations teams can
effortlessly scale out even under heavy load without
downtime by simply adding nodes to a cluster, and
scale back in when the load reduces

Geographically distributed: Operators can make
use of synchronous and asynchronous data
replication and geo-partitioning to deploy
databases in geo-distributed configurations

SQL and RDBMS feature compatible: Developers
no longer need to choose between the horizontal
scalability of cloud native systems and the ACID
guarantees and strong consistency of traditional
RDBMSs

Hybrid and multi-cloud ready: Organizations can
deploy and run data infrastructure anywhere—and
avoid being locked-in to any specific cloud provider

7Migrating From Monolithic to Cloud Native Operational Databases

Distributed SQL Database Architecture

A distributed SQL database provides the best of a traditional
RDBMS with cloud native database capabilities. It has a two-
layer architecture as part of a single logical SQL database:

API /

Query Layer

Data Storage

Layer

API /

Query Layer

Data Storage

Layer

API /

Query Layer

Data Storage

Layer

Applications

Single Logical SQL Database

node 1

node 3node 2

SQL Query Layer

A distributed SQL database has a SQL API for applications to
model relational data and also perform queries involving
those relations. Queries are automatically distributed
across multiple nodes of the database cluster.

Distributed Data Storage Layer

Data, including indexes, in a distributed SQL database are
automatically distributed—or —across multiple
nodes of the cluster so that no single node becomes a
bottleneck to high performance and availability.

Supporting a powerful SQL API layer requires the underlying
storage layer to be built on
across all nodes of the cluster. This means writes to the
database are synchronously committed at multiple nodes in
order to guarantee availability during failures.

And finally, the database storage layer supports
 where transaction coordination is

required across multiple rows located on multiple nodes.

sharded

strongly consistent replication

distributed
ACID transactions

8Migrating From Monolithic to Cloud Native Operational Databases

https://docs.yugabyte.com/latest/architecture/docdb-sharding/sharding/#root
https://docs.yugabyte.com/latest/architecture/docdb-replication/replication/#follower-reads
https://docs.yugabyte.com/latest/architecture/transactions/distributed-txns/#root
https://docs.yugabyte.com/latest/architecture/transactions/distributed-txns/#root

YugabyteDB: Best-in-Class
Distributed SQL for Cloud Native
Databases
YugabyteDB

Raft
protocol

failure domains
replication factor database affinity to failure domains

 is a cloud native distributed SQL database for
transactional applications. The database is 100% open
source and built to solve availability and resiliency
challenges when running application workloads on
Kubernetes. It is designed with 3 foundational principles in
mind: operational simplicity, developer productivity, and
customer delight.

This database uses replicas for high availability and
supports synchronization through the use of the

. Additional features include partitions (called
tablets) for scalability, and in case of a cross-tablet
transaction, the two-phase commit protocol is also
implemented.

YugabyteDB automatically partitions SQL tables into tablets
without user intervention. It also automatically distributes
tablet replicas to the configured failure domains ensuring,
as much as possible, no data loss. This behavior can be
influenced by the user configuring the ,

, and .

Deployment Flexibility

YugabyteDB runs in public, private, and hybrid cloud
environments, on VMs, containers or bare metal.
Organizations can deploy the database in any Kubernetes
environment. It is also available as a multi-cloud, fully
managed database-as-a-service (DBaaS) for a frictionless
experience. YugabyteDB offers the widest range of
replication and geo-distribution options among distributed
SQL databases.

High Performance

YugabyteDB can handle high throughput, low latency
transactions on Kubernetes. It is proven in production to
scale beyond 1 million transactions per second and
thousands of concurrent connections.

Operational Simplicity

Organizations can use the self-managed or fully managed
DBaaS offerings of YugabyteDB to simplify operations at the
edge and in the cloud. The database also integrates with
other data sources or sinks, allowing data engineers to build
pipelines for machine learning, analytics, long term storage,
and disaster recovery.

Multi-API Query Layer

Eliminate database sprawl with a pluggable query layer that
supports both Postgres and Cassandra APIs.

Inherently Geo-Distributed

Distribute Data across zones, regions and clouds with ACID
consistency. Delivers most complete global replication.

PostgreSQL Compatibility

YugabyteDB is not just wire compatible with PostgreSQL, it
is code compatible. The database also offers a
comprehensive set of advanced RDBMS features including
triggers, functions, stored procedures, and strong
secondary indexes. This allows developers to be
immediately productive with the familiar interface and the
rich ecosystem of PostgreSQL compatible frameworks,
applications, drivers, and tools.

Security

YugabyteDB is built from the ground up with data security in
mind, enabling organizations to maintain a robust security
posture even with a more distributed footprint. YugabyteDB
offers features such as data encryption at rest and in flight,
multi-tenancy support at the database layer with per-tenant
encryption, and regional locality of data to ensure
compliance as well as manage geographic access controls.

Feature Comparison

Finally, here’s how YugabyteDB compares with other
operational databases we discussed earlier in this paper

9Migrating From Monolithic to Cloud Native Operational Databases

https://www.yugabyte.com/yugabytedb/
https://raft.github.io/
https://raft.github.io/
https://docs.yugabyte.com/latest/reference/configuration/yb-tserver/#geo-distribution-flags
https://docs.yugabyte.com/latest/admin/yb-admin/#modify-placement-info
https://docs.yugabyte.com/latest/admin/yb-admin/#set-preferred-zones

Feature

Schema

Language

Scalability

Consistency

Replication

Availability

Transactions

Caching

Cloud Infra

Target Apps

Traditional SQL

Relational

SQL

Vertical

Strong

Configurable

Low

ACID

Independent

Cloud Hosted

OLTP

Traditional NewSQL

Relational

SQL

Horizontal

Strong

Configurable

Low

ACID

Independent

Cloud Hosted

OLTP

Traditional NoSQL

Multi-Model

Custom

Horizontal

Eventual (Tunable)

Automatic

High

BASE

Independent

Cloud Hosted

HTAP, OLAP

YugabyteDB

Multi-Model

SQL & CQL

Horizontal

Strong

Automatic

High

ACID

Built-in

Cloud Native

OLTP, HTAP

Conclusion
Enterprises need a multi-model, enterprise-grade OLTP/HTAP data layer that gives them the same cloud native agility they are
deriving from microservices and containers. However, current generation solutions aren’t serving this need. SQL and NewSQL
databases deliver developer productivity through strong consistency, but they add significant operational complexity given the
lack of cloud native features and multi-model capabilities. On the other hand, using cloud hosted, eventually consistent NoSQL
databases for OLTP/HTAP use cases leads to not just loss of developer productivity, but also increased operational complexity.

YugabyteDB frees application developers and technical operations teams of the painful and long-standing compromises listed
above. Built on top of a scale out, cloud native and strongly consistent core, this database allows developers to leverage popular
NoSQL languages in the context of customer-facing OLTP/HTAP application.

Get in Touch

|www.yugabyte.com contact@yugabyte.com

https://www.yugabyte.com/
mailto:contact@yugabyte.com
https://github.com/yugabyte/yugabyte-db
https://github.com/yugabyte/yugabyte-db
https://yugabyte-db.slack.com/join/shared_invite/zt-xbd652e9-3tN0N7UG0eLpsace4t1d2A#/shared-invite/email
https://yugabyte-db.slack.com/join/shared_invite/zt-xbd652e9-3tN0N7UG0eLpsace4t1d2A#/shared-invite/email
https://twitter.com/Yugabyte?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://twitter.com/Yugabyte?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://www.linkedin.com/company/yugabyte/mycompany/
https://www.linkedin.com/company/yugabyte/mycompany/
https://www.youtube.com/channel/UCL9BhSLRowqQ1TyBndhiCEw
https://www.youtube.com/channel/UCL9BhSLRowqQ1TyBndhiCEw

