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Introduction
Enterprises large and small are increasingly migrating their 
mission-critical applications from legacy, monolithic 
architectures running inside on-prem data centers to 
modern microservices architectures running on public, 
private, or hybrid cloud infrastructure. Application 
development and technical operations teams leverage a 
multitude of cloud native infrastructure technologies, such 
as Docker and Kubernetes, to make this migration possible.



However, one major roadblock to a more accelerated 
migration to microservices and cloud infrastructure is an 
inability to move the stateful data layer with the stateless 
application layer at the same velocity. This stateful data 
layer consists of a persistent database and an in-memory 
cache that fronts the database. In the context of databases, 
it is well known that SQL-based relational databases are not 
suitable for dynamic cloud infrastructure. On the other 
hand, NoSQL and NewSQL databases look cloud ready from 
a distance, but they, too, present significant operational 
challenges when run at scale in production.



In this white paper, we highlight the causes and effects of 
these industry defining trends, especially in the context of 
operational databases. We also introduce YugabyteDB, a 
cloud native, strongly consistent, distributed SQL database 
built from the ground-up for today’s mission-critical 
applications. YugabyteDB provides the much desired cross-
cloud operational mobility in the data layer while 
simultaneously making it extremely easy for enterprise 
developers to write applications.



The Evolution of Operational 
Databases
While application architectures and infrastructures 
underwent massive shifts, operational databases powering 
mission-critical Online Transaction Processing (OLTP) 
applications also experienced significant changes, albeit 
more slowly than the application and infrastructure side.

Monolithic to Sharded and Distributed

Relational databases, also known as Structured Query 
Language (SQL) databases, have been the de-facto OLTP 
database standard for the last 40 years. They are 
architecturally monolithic in nature and run on a single node 
backed by specialized, high cost hardware with several 
problematic consequences. They require painful vertical 
hardware scaling as the application’s read/write volume 
increases.



Adding high availability entails adding a new independent 
database instance and then copying the data over via either 
async or sync replication. Async replication, also known as 
master-standby, involves replicating committed data from 
master to standby periodically. There can be some data loss 
when the master fails and the standby hasn’t received some 
of the writes yet.




Availability is also not 100% since there is usually downtime 
involved in failing over to the standby. Sync replication 
guarantees zero data loss using atomic write operations 
implemented via protocols such as 2-phase commit. 
However, such a system becomes unavailable whenever one 
of the two instances is down or there is a network problem 
leading to loss of connectivity between the two instances.




Simple sharding, where data is partitioned across 
independent databases, is an architectural enhancement 
that is added to achieve linear scalability. The application 
must become responsible for identifying which shard has 
what data. The resulting complexity is often underestimated, 
especially as the number of shards grows with changing 
business needs. High availability of each shard is still 
maintained through async or sync replication, thus adding 
another layer of operational complexity. Such sharded 
relational databases are often referred to as NewSQL.

On the other hand, NoSQL, which stands for Not Only SQL, 
refers to a class of databases that are distributed, 
horizontally scalable, sharded and multi- copy replicated by 
default. The distributed, multi-copy replicated approach 
provides more write and read availability than both SQL and 
NewSQL databases. This is because the number of failures 
tolerated can be tuned by simply increasing or decreasing 
the replication factor, the number of replicas per shard. 
NewSQL databases have adopted NoSQL-like distributed 
architectures with the goal of providing higher availability 
than older generation databases.
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Strong Consistency to Eventual 
Consistency

The famous CAP (Consistency, Availability, and Partition-
tolerance) theorem states that network partitions cannot 
be avoided in distributed systems. Therefore, whenever 
such network partitions arise, the choice is only between 
100% consistency and 100% availability (there is no 
compromise needed during normal operating conditions). 
Since partitions are a non-issue in monolithic relational 
databases, there is no trade-off to be made between 
consistency and availability. The practical trade-off is lack of 
scalability. Sharded NewSQL and distributed NoSQL 
databases solve the scalability problem but now are forced 
to make a choice between 100% consistency and 100% 
availability during network partitions. In practice, this 
choice is based on the primary workload type the database 
is optimized for.




NewSQL databases are used for traditional “system-of-
record” OLTP applications such as a product catalog where 
there are a smaller number of entities being worked on with 
a narrow context (such as online checkout). Hence the 
motivation for strong consistency, also called immediate 
consistency, where data viewed immediately after an 
update is consistent for all observers of the entity.



The underlying implementation of strong consistency relies 
on various kinds of locks and concurrency control for brief 
periods of time. This allows intermediate and incorrect 
states of the data that are either avoided altogether or 
become invisible to client applications. As expected, these 
databases suffer from lower availability and higher latency 
during network partitions. NewSQL databases aim for much 
higher availability while maintaining strong consistency.



On the other hand, traditional NoSQL databases are 
typically used for one of two kinds of applications: Hybrid 
Transactional/Analytics Processing (HTAP) and Online 
Analytical Processing (OLAP).



Both application types require high write availability and 
can tolerate some degree of stale reads, hence the 
motivation for eventual consistency. Eventual consistency is 
a theoretical guarantee that, provided no new updates to an 
entity are made, all reads of the entity will eventually return 
the last updated value. In these cases, the inclusion or 
exclusion of a set of entities is not expected to impact user 
experience since the overall number of entities is large.

Given this fundamental unpredictability associated with 
eventual consistency, NoSQL databases are not 
recommended for mission-critical OLTP and HTAP 
applications where guaranteed Service Level Agreements 
(SLAs) are mandatory. Critics consider eventual consistency 
to be “hopeful” consistency given the hopeful and arguably 
unrealistic requirement of avoiding new updates altogether. 



Traditional NoSQL databases with their eventually 
consistent cores are increasingly tuned for strong 
consistency using quorum-based approaches. However, 
these band-aid solutions come with a clear decrease in 
performance as well as a significant increase in operational 
and end user pain. Even the large technology companies 
that originally served as early NoSQL adopters are now 
forced to rethink their ever-increasing engineering 
investment.
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ACID to BASE

The consistency and replication architecture of a database’s 
server-side has a direct impact on how client transactions 
are served. Arguably the most important reason behind the 
massive adoption of strongly consistent relational 
databases is the notion of 

 guarantees with respect to client 
transactions. These transactions make it simple for 
developers to reason about and control (by tuning isolation 
levels) the write/read behaviors expected in their 
applications.




Applying the lock-based implementation approach behind 
ACID transactions to distributed NoSQL databases would 
make them unavailable for extended periods of time. This is 
unacceptable given the primary need of high availability.



But NoSQL databases instead support Basically Available 
Soft-state Eventually Consistent (BASE) client 
transactions where higher read and write availability is 
favored even if the data is stale or dirty. BASE transactions, 
with isolation levels worse than READ UNCOMMITTED, are 
unfit to be used in system-of-record applications since it’s 
impossible to say what’s the correct value of a record at a 
given instant of time. 

Atomicity, Consistency, Isolation 
and Durablity (ACID)

SQL to NewSQL and NoSQL

The above server-side and client-side architectural 
differences mean that NoSQL databases cannot simply 
adopt SQL as their client interaction language. SQL allows 
for multiple rows to be updated and queried (sometimes 
using JOINs) at the same time. 



Unfortunately, those rows are not guaranteed to be in the 
same shard in NoSQL databases, and reducing availability 
to coordinate atomicity in multi-shard transactions is not an 
option. NoSQL databases thus do not support JOINs and 
have a client language of their own. For example, Apache 
Cassandra has a SQL variant called Cassandra Query 
Language, and MongoDB has its proprietary 

CRUD operations.

NewSQL databases aim to support as much of the 
traditional SQL syntax as possible including JOINs. These 
databases are essentially abstraction layers running on top 
of multiple independent monolithic relational databases. 
There are also a few use case specific databases for 
streaming data analytics. The choice of SQL for such non-
OLTP use cases is primarily driven by the need to take 
advantage of SQL’s popularity among developers.
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Relational to Multi-Model

Relational databases work well for structured data that gets 
organized as rows in tables with each column having a 
strongly typed value. Such a rigid schema approach does 
not work well for applications with semi-structured or 
unstructured data needs. NoSQL databases solve this 
problem by providing either a more flexible schema (e.g., 
column-oriented databases such as Apache Cassandra and 
Apache HBase) or going schema-less (e.g., document 
databases such as MongoDB). There are also key-value 
stores (e.g., Redis) with in-memory data structures but no 
concept of a persistent store or schema as such. 

https://www.yugabyte.com/tech/distributed-acid-transactions/
https://www.yugabyte.com/tech/distributed-acid-transactions/


On-Premises to Cloud Hosted

The distributed architecture and horizontal scaling aspects 
of NoSQL databases make them well suited for hosted 
deployments in the cloud where instances can be 
dynamically provisioned. On the other hand, the monolithic 
architecture and vertical scaling requirements of relational 
databases mean that their infrastructure needs are less 
dynamic. Although they can be hosted in the cloud, on-
premises data centers with static capacity work just fine for 
such cases.

Rise of Database-as-a-Service (DBaaS)

In the last few years, both leading cloud providers and 
major database vendors have introduced Database-as-a-
Service (DBaaS) offerings. The common theme is that the 
operational complexity of managing and monitoring the 
database is no longer the customer’s concern. Operations 
are now the provider’s responsibility and the cost is 
included in the price of the offering. In many cases, the 
offering is simply a hosted version of an open source 
database such as Amazon RDS/Aurora or MongoDB Atlas. In 
a select few cases, the cloud providers also offer proprietary 
databases as a service, such as Amazon DynamoDB.

Defining “Cloud Native” for Databases

Cloud native is fast becoming a reality for the application 
layer. However, the same cannot be said about the data 
layer powering the application. Cloud hosted NoSQL and 
NewSQL databases can be horizontally deployed on cloud 
infrastructure but they do not abstract away the various 
cloud providers while keeping the core database 
functionality uniform and reliable. Below are the five 
defining characteristics of a cloud native database.

Extreme elasticity: Scale clusters up and down 
speedily and reliably.



Geo-redundant, always-on availability: Easily 
create multi-AZ/multi-region clusters and then 
expand or shrink availability zones or regions 
anytime, while remaining resilient to unplanned 
failures and planned upgrades.

Note that DBaaS offerings abstract out the underlying 
cloud infrastructure and are being marketed as “cloud 
native.” However, enterprises do not consider these 
services truly cloud native given the inherent cloud vendor 
lock-in and loss of control on data and servers that comes 
along with any such service. Additionally, deploying 
traditional NoSQL or NewSQL databases on stateful 
containers (such as Kubernetes StatefulSets) solves the 
cloud provider abstraction problem, but it does not serve 
the desired end goal of agile development and operations. 
This is because these traditional databases are not built on 
a cloud native foundation. The data storage and 
replication layers of these databases lack the availability 
and mobility necessary to exploit the full potential of 
orchestration-ready stateful containers.

Hardware flexibility: Seamlessly move from one 
type of compute and storage to another for cost and 
performance reasons.



Multi-cloud mobility: Avoid cloud lock-in by 
moving to or co-existing on multiple cloud 
providers.



Data placement policies: Define and enforce geo-
specific data residency controls without impacting 
the app
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Three Challenges of NoSQL 
Databases
In this section, we walk through the three challenges of 
using current generation NoSQL databases: operational 
complexity, frustrating application development, and 
inconsistent customer experiences.

Operational Complexity

As noted in the previous section, databases have evolved to 
become cloud hosted but are far from being truly cloud 
native. The current operational complexity is painful for 
organizations looking to exploit the elasticity and geo-
redundancy of modern cloud infrastructure to its maximum 
potential. On top of this, the eventually consistent core of 
NoSQL adds hidden costs such as performance-killing 
background repairs and unpredictable, memory-intensive 
compaction storms. The fact that most enterprises also run 
an independent caching layer (such as Redis or Memcache) 
alongside their persistent database simply makes all 
operational challenges twice as hard.



In context of the original need to move the data layer 
through the same phases and at the same velocity as the 
application layer, the above operational challenges simply 
make such moves next to impossible. If such a move is 
forced on operations teams, then it means business loss 
manifested as both unpredictable downtimes and manual, 
error-prone war rooms.

Frustrating Application Development

Application developers desire the simplicity of ACID 
transactions so that they can easily reason about the read/
write behavior of their database client code. Relational 
databases support multi-row ACID where multiple related 
rows can be updated or read in an all-or-nothing and 
consistent manner. However, most NoSQL databases do not 
even support single-row ACID transactions, since eventual 
consistency leads to the “C” getting compromised at the 
remote replicas.



The net result is extremely long development and test cycles 
to handle all the corner cases necessary to achieve desired 
read/write behavior. For example, the answer to “what value 
will be read after a failed write?” varies wildly among NoSQL 
databases. Additionally, most NoSQL databases either do not 
support secondary indexes or have extremely poor 
performing secondary indexes (as a direct result of accessing 
all shards). Loss of this critical feature also slows down 
development since complex workarounds must be designed, 
implemented, and tested.



Many NoSQL databases are starting to realize the advantages 
of strong consistency and are allowing their eventually 
consistent systems to be tuned to quorum-based strong 
consistency settings. However, it is well proven that this form 
of tunable consistency is not truly strong for many situations, 
including dirty reads after failed writes and unpredictable 
reads after the last writer wins. Developers using this 
approach are forced to spend even more time testing their 
applications to guarantee predictable behaviors.
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Inconsistent Customer Experiences

Even with all the tuning efforts from developers to build 
strongly consistent OLTP/HTAP applications on eventually 
consistent NoSQL databases, error conditions are 
unavoidable. During these error conditions, inconsistency is 
exposed to end customers. 



For example, a few items were deleted from a retailer’s 
product catalog since they were no-longer-available. 
However, those deletes were not honored when the data 
was presented to the customer, since the node from which 
that data was served did not have the deletes applied yet. 
Another example would be ignoring some of the time-series 
metric data for calculating aggregates in alerting for time-
series monitoring and Internet of Things (IoT) use cases. 
Waking up team members in the early morning hours based 
on incorrect data should be avoided. Similarly, if a user’s 
privacy preferences are not immediately honored, there is a 
possibility her actions will appear to other users in the same 
account.

Solving NoSQL Challenges 
with Distributed SQL
A distributed SQL database is a single logical relational 
database deployed on a cluster of servers. The database 
automatically replicates and distributes data across 
multiple servers. These databases are strongly consistent 
and support consistency across availability and geographic 
zones in the cloud.



At a minimum, a distributed SQL database has the following 
characteristics�

� A SQL API for accessing and manipulating data and 
object�

� Automatic distribution of data across nodes in a cluste�

� Automatic replication of data in a strongly consistent 
manne�

� Support for distributed query execution so clients do not 
need to know about the underlying distribution of dat�

� Support for distributed ACID transactions

Why Distributed SQL?

Business innovation is putting pressure on traditional 
systems of record. This is forcing companies to deliver high-
value applications and services more quickly while lowering 
IT costs and reducing risk through compliance.



But these applications—in the form of microservices, born-
in-the-cloud applications, and edge and IoT workloads—
require a new class of database that is:

Resilient to failures and continuously available: 
Critical services remain available during node, zone, 
region, and data center failures as well as system 
maintenance with fast failover



Horizontally scalable: Operations teams can 
effortlessly scale out even under heavy load without 
downtime by simply adding nodes to a cluster, and 
scale back in when the load reduces



Geographically distributed: Operators can make 
use of synchronous and asynchronous data 
replication and geo-partitioning to deploy 
databases in geo-distributed configurations



SQL and RDBMS feature compatible: Developers 
no longer need to choose between the horizontal 
scalability of cloud native systems and the ACID 
guarantees and strong consistency of traditional 
RDBMSs 



Hybrid and multi-cloud ready: Organizations can 
deploy and run data infrastructure anywhere—and 
avoid being locked-in to any specific cloud provider
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Distributed SQL Database Architecture

A distributed SQL database provides the best of a traditional 
RDBMS with cloud native database capabilities. It has a two-
layer architecture as part of a single logical SQL database:

API /

Query Layer

Data Storage

Layer

API /

Query Layer

Data Storage

Layer

API /

Query Layer

Data Storage

Layer

Applications

Single Logical SQL Database

node 1

node 3node 2

SQL Query Layer

A distributed SQL database has a SQL API for applications to 
model relational data and also perform queries involving 
those relations. Queries are automatically distributed 
across multiple nodes of the database cluster.

Distributed Data Storage Layer

Data, including indexes, in a distributed SQL database are 
automatically distributed—or —across multiple 
nodes of the cluster so that no single node becomes a 
bottleneck to high performance and availability.



Supporting a powerful SQL API layer requires the underlying 
storage layer to be built on  
across all nodes of the cluster. This means writes to the 
database are synchronously committed at multiple nodes in 
order to guarantee availability during failures. 



And finally, the database storage layer supports 
 where transaction coordination is 

required across multiple rows located on multiple nodes. 

sharded

strongly consistent replication

distributed 
ACID transactions

8Migrating From Monolithic to Cloud Native Operational Databases

https://docs.yugabyte.com/latest/architecture/docdb-sharding/sharding/#root
https://docs.yugabyte.com/latest/architecture/docdb-replication/replication/#follower-reads
https://docs.yugabyte.com/latest/architecture/transactions/distributed-txns/#root
https://docs.yugabyte.com/latest/architecture/transactions/distributed-txns/#root


YugabyteDB: Best-in-Class 
Distributed SQL for Cloud Native 
Databases
YugabyteDB

Raft 
protocol

failure domains
replication factor database affinity to failure domains

 is a cloud native distributed SQL database for 
transactional applications. The database is 100% open 
source and built to solve availability and resiliency 
challenges when running application workloads on 
Kubernetes. It is designed with 3 foundational principles in 
mind: operational simplicity, developer productivity, and 
customer delight.





This database uses replicas for high availability and 
supports synchronization through the use of the 

. Additional features include partitions (called 
tablets) for scalability, and in case of a cross-tablet 
transaction, the two-phase commit protocol is also 
implemented.





YugabyteDB automatically partitions SQL tables into tablets 
without user intervention. It also automatically distributes 
tablet replicas to the configured failure domains ensuring, 
as much as possible, no data loss. This behavior can be 
influenced by the user configuring the , 

, and .

Deployment Flexibility

YugabyteDB runs in public, private, and hybrid cloud 
environments, on VMs, containers or bare metal. 
Organizations can deploy the database in any Kubernetes 
environment. It is also available as a multi-cloud, fully 
managed database-as-a-service (DBaaS) for a frictionless 
experience. YugabyteDB offers the widest range of 
replication and geo-distribution options among distributed 
SQL databases.

High Performance

YugabyteDB can handle high throughput, low latency 
transactions on Kubernetes. It is proven in production to 
scale beyond 1 million transactions per second and 
thousands of concurrent connections.

Operational Simplicity

Organizations can use the self-managed or fully managed 
DBaaS offerings of YugabyteDB to simplify operations at the 
edge and in the cloud. The database also integrates with 
other data sources or sinks, allowing data engineers to build 
pipelines for machine learning, analytics, long term storage, 
and disaster recovery.

Multi-API Query Layer

Eliminate database sprawl with a pluggable query layer that 
supports both Postgres and Cassandra APIs.

Inherently Geo-Distributed

Distribute Data across zones, regions and clouds with ACID 
consistency. Delivers most complete global replication.

PostgreSQL Compatibility

YugabyteDB is not just wire compatible with PostgreSQL, it 
is code compatible. The database also offers a 
comprehensive set of advanced RDBMS features including 
triggers, functions, stored procedures, and strong 
secondary indexes. This allows developers to be 
immediately productive with the familiar interface and the 
rich ecosystem of PostgreSQL compatible frameworks, 
applications, drivers, and tools.

Security

YugabyteDB is built from the ground up with data security in 
mind, enabling organizations to maintain a robust security 
posture even with a more distributed footprint. YugabyteDB 
offers features such as data encryption at rest and in flight, 
multi-tenancy support at the database layer with per-tenant 
encryption, and regional locality of data to ensure 
compliance as well as manage geographic access controls.

Feature Comparison

Finally, here’s how YugabyteDB compares with other 
operational databases we discussed earlier in this paper
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https://www.yugabyte.com/yugabytedb/
https://raft.github.io/
https://raft.github.io/
https://docs.yugabyte.com/latest/reference/configuration/yb-tserver/#geo-distribution-flags
https://docs.yugabyte.com/latest/admin/yb-admin/#modify-placement-info
https://docs.yugabyte.com/latest/admin/yb-admin/#set-preferred-zones


Feature

Schema

Language

Scalability

Consistency

Replication

Availability

Transactions

Caching

Cloud Infra

Target Apps

Traditional SQL

Relational

SQL

Vertical

Strong

Configurable

Low

ACID

Independent

Cloud Hosted

OLTP

Traditional NewSQL

Relational

SQL

Horizontal

Strong

Configurable

Low

ACID

Independent

Cloud Hosted

OLTP

Traditional NoSQL

Multi-Model

Custom

Horizontal

Eventual (Tunable)

Automatic

High

BASE

Independent

Cloud Hosted

HTAP, OLAP

YugabyteDB

Multi-Model

SQL & CQL

Horizontal

Strong

Automatic

High

ACID

Built-in

Cloud Native

OLTP, HTAP

Conclusion
Enterprises need a multi-model, enterprise-grade OLTP/HTAP data layer that gives them the same cloud native agility they are 
deriving from microservices and containers. However, current generation solutions aren’t serving this need. SQL and NewSQL 
databases deliver developer productivity through strong consistency, but they add significant operational complexity given the 
lack of cloud native features and multi-model capabilities. On the other hand, using cloud hosted, eventually consistent NoSQL 
databases for OLTP/HTAP use cases leads to not just loss of developer productivity, but also increased operational complexity.



YugabyteDB frees application developers and technical operations teams of the painful and long-standing compromises listed 
above. Built on top of a scale out, cloud native and strongly consistent core, this database allows developers to leverage popular 
NoSQL languages in the context of customer-facing OLTP/HTAP application.

Get in Touch

|www.yugabyte.com        contact@yugabyte.com

https://www.yugabyte.com/
mailto:contact@yugabyte.com
https://github.com/yugabyte/yugabyte-db
https://github.com/yugabyte/yugabyte-db
https://yugabyte-db.slack.com/join/shared_invite/zt-xbd652e9-3tN0N7UG0eLpsace4t1d2A#/shared-invite/email
https://yugabyte-db.slack.com/join/shared_invite/zt-xbd652e9-3tN0N7UG0eLpsace4t1d2A#/shared-invite/email
https://twitter.com/Yugabyte?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://twitter.com/Yugabyte?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://www.linkedin.com/company/yugabyte/mycompany/
https://www.linkedin.com/company/yugabyte/mycompany/
https://www.youtube.com/channel/UCL9BhSLRowqQ1TyBndhiCEw
https://www.youtube.com/channel/UCL9BhSLRowqQ1TyBndhiCEw

