
THE
DATABASE
ARCHITECT’S
GUIDE TO
DISTRIBUTED SQL
FOR FINANCIAL
SERVICES

3

4

6

8

9

12

23

29

The Current Financial Services
Landscape

Financial Services Industry
Innovation

An Introduction to Data-Driven
Innovation and the Monoliths
Holding It Back

The Need for Database
Modernization in Financial Services

How to Accelerate
Modernization and Innovation
with Distributed SQL

YugabyteDB — Distributed SQL for
Financial Services

A Database Architect Shares
the Secrets to His Success

YugabyteDB’s Financial Services
Track Record

6.

7.

8.

5.

4.

3.

2.

1.
TA

BL
E

O
F

C
O

N
TE

N
TS

To pull ahead in 2023 (and 2032!) financial services
organizations want SQL-compatible databases that are:

• MULTICLOUD/HYBRID CLOUD
• RELIABLE
• SCALABLE
• SECURE
• POSTGRESQL-COMPATIBLE

THE CURRENT
FINANCIAL SERVICES
LANDSCAPE
Financial services companies have pursued digital transformation in different ways and at
different rates. Some are moving their infrastructure to the public cloud, while others are going
all-in and building microservices-based applications. Others are actively seeking to reduce
their dependence on monolithic SQL databases like Oracle and Db2.

Everyone’s methods may be different, but their goals are the same—to innovate and keep pace
with more digitally-demanding customers in a world where competition is fiercer and regulation
is ever increasing. All while trying to manage a huge range of legacy systems that may not be
up to the task.

IT teams are under immense pressure to improve performance, reduce costs, and deliver a
dependable, adaptable, and future-proofed database operation that can run at the speed of
light. This Database Architect’s Guide is intended to act as a guide for that journey and how
distributed SQL (in general) and YugabyteDB (specifically) can help.

Top Database Trends and Predictions to Look For in 2023

3| The Database Architect’s Guide to Distributed SQL for Financial Services

https://www.yugabyte.com/blog/database-predictions-2023/

Financial services ranked second
to last across 12 sectors for
perceived customer-centricity
(only ahead of the US
government).

In recent years, there’s been substantial investment in new technologies, initiatives, and projects
aimed at meeting the expectations of mobile and digital-first customers, streamlining processes,
and reducing costs within this highly competitive and increasingly regulated industry.

There is a compelling need to differentiate products and services and bring them to market
quickly. Innovation is a 24/7/365 mindset.

It is also not one-dimensional. Products and services that are cutting edge one day are out of
date the next. And customers expect a continual evolution of efficiency and digitization.

FINANCIAL
SERVICES INDUSTRY
INNOVATION

Salesforce State of the Connected Consumer Report, 2020

4| The Database Architect’s Guide to Distributed SQL for Financial Services

https://www.salesforce.com/resources/articles/customer-expectations/?sfdc-redirect=369

This raises the bar for financial services companies. They must not only find ways to
stand out in a very crowded field of competitors, but also emerge from the increasingly
crowded field of their own making.

Customers look for constant innovation in terms of their own digital products and
services. But it’s more than just apps and self-service access. Those are table stakes.
Customer expectations are also driving changes to the very way many financial services
firms are doing business. They are placing more importance on the firm’s ability
to intelligently personalize every step of their journey—not just the end. They
expect decisions to be made in real time—not in batches once the data has been
delivered and processed. They are embracing a more open ecosystem where they
can access a variety of financial services through multiple channels and systems.
They are not looking to stay within four discrete walls.

To offer these services and set themselves apart, financial services firms must innovate
by unlocking their most valuable, proprietary asset—data. But many are hobbled by
their back-end systems, which are proving to be inflexible and slow to change.

The Top
Financial Services Challenges

Navigating complex
cross-border regulatory,
compliance, and reporting
requirements

Diversifying revenue
streams

Standing out from rivals
and improving outdated
product offerings

Keeping pace with
digital-first competitors

Streamlining operations
and improving efficiency

Implementing new
and innovative ways to
serve and engage with
customers

5| The Database Architect’s Guide to Distributed SQL for Financial Services

Data holds value. It reduces risk, informs better decisions, and drives innovation. But innovating
is difficult if you’re trying to support a wide range of legacy, monolithic technologies that were
not natively built to support the speed at which today’s banks, fintechs, and financial services
firms need to operate.

Many companies recognize this and have begun to extract this hidden value by modernizing
their technology stack, including their infrastructure, applications, and databases.

However, while most financial services companies have embraced cloud platforms and
microservices-based applications, many have not yet modernized their databases. They
struggle to support cloud-native application code running at scale or to ingest data from various
processing systems and bring it all together in one platform.

A modern data layer helps financial services organizations leverage their most valuable asset—
data—so they can quickly develop new revenue streams, become more nimble, and future-
proof their systems, processes, and workflows.

AN
INTRODUCTION
TO DATA-DRIVEN
INNOVATION AND
THE MONOLITHS
HOLDING IT BACK

6| The Database Architect’s Guide to Distributed SQL for Financial Services

How Can Financial
Services Firms Innovate?

Explore options to
simplify the application
development process

Reduce operational
burdens

06

08

Improve their digital
customer experience

Embrace a multicloud
strategy

05

07

Future-proof systems,
processes, and
workflows 04

Improve access to
real-time data

03

Monetize and maximize
the value of their data

02

Modernize
legacy systems

01

7| The Database Architect’s Guide to Distributed SQL for Financial Services

It's this data layer that is holding back many financial
services companies from:

• Meeting current and future customer expectations

• Finding new ways to monetize their data

• Handling compliance, security, and regulations with ease

• Truly differentiating themselves

Digital transformation initially focused on the infrastructure layer, which included virtualization
and cloud, before shifting to the application layer. Today's applications are being built specifically
for the cloud (private and hybrid), and more financial services companies are moving away from
monolithic applications to microservices and agile development processes.

This shift has given development teams the freedom to choose the infrastructure that best fits
their apps, allowing them to deliver solutions with greater speed and flexibility. Infrastructure
can now be provisioned in minutes, and applications can be built and scaled much faster.

However, the transactional database remains the last piece of the puzzle. If not modernized,
it can strain resources and negate much of the progress made in terms of speed and agility.

Companies may have a flexible cloud infrastructure at the bottom and a proven approach to
application development at the top, but for many, the transactional database remains a slow-
moving part of the stack. If an app suddenly hits an inflection point and requires massive scale,
the monolithic, legacy database will struggle and may even shut down.

THE NEED FOR
DATABASE
MODERNIZATION
IN FINANCIAL
SERVICES

8| The Database Architect’s Guide to Distributed SQL for Financial Services

Despite the rise of cloud infrastructures and cloud-native applications, many financial services
firms still rely on legacy RDBMSs, like Oracle, SQL Server, and Db2, for their business-critical
applications.

These monolithic databases were not designed for the world that financial services firms now
inhabit—one of cloud computing and geo-distributed applications. In fact, these databases
were built long before the first cloud architecture was doodled on a napkin.

Monoliths handle increasing demand for data volumes and processing performance by adding
capacity. That is not as quick and easy as it sounds. If demand falls, it is just as difficult to scale
them down. The only way to safeguard against the total collapse of the single host machine is
to run a second, standby, machine and keep its data synchronized with the primary machine
through replication. However, unless performance is unacceptably compromised, replication
can only be asynchronous, resulting in additional complications.

This does not work when trying to run geo-distributed microservices with the millisecond
responses that customers demand. The database needs to be agile, horizontally scalable,
and continuously available. It needs to have been built for the cloud, not retrofitted for it. The
database needs to be distributed SQL.

HOW TO
ACCELERATE
MODERNIZATION
AND INNOVATION
WITH
DISTRIBUTED SQL

9| The Database Architect’s Guide to Distributed SQL for Financial Services

Feature

Scalability

Strong Consistency

Replication

Availability

Caching

Cloud Infrastructure

Vertical

Local

Manual

Low

Independent

Cloud Hosted

Horizontal & Vertical

Global

Automatic

High

Built-in

Cloud Native

Monolithic SQL Distributed SQL

What are the main feature differences between a monolithic, legacy SQL database and a
modern, distributed SQL database? It comes down to scalability, replication, availability, and
the type of infrastructure it resides on.

Distributed SQL is not only transformative in terms of
innovation and customer satisfaction, but it can also
have a positive impact on the bottom line.

• The ratio of operations personnel to developers can be very low, sometimes only
requiring one operator for every 100 developers.

• Infrastructure costs are significantly lower due to distributed SQL’s flexible use of
commodity hardware vs the high-performance servers or specialized hardware usually
required for databases like Oracle and IBM Db2. Additionally, data density can even
further reduce the hardware footprint, especially compared to common NoSQL solutions.

• True open-source distributed SQL solutions have much lower software licensing costs
compared to proprietary databases, and they are more capable thanks to the robust,
developer community that surrounds them.

• Revenue loss due to downtime is eliminated with distributed SQL, helping to maintain
high profit margins.

• Consolidating existing SQL and NoSQL workloads into a distributed SQL implementation
can save money by minimizing database sprawl and reducing operational complexity.

NoSQL databases were developed as an alternative to
SQL databases. Their goal was to provide horizontal
scalability without compromising performance. However,
NoSQL only looks cloud-ready from a distance. They
present significant operational challenges when run at
scale in production.

History of the Transactional Database

11| The Database Architect’s Guide to Distributed SQL for Financial Services

https://www.yugabyte.com/learn/transactional-database-history/

Enter YugabyteDB. YugabyteDB is a cloud native relational database for modern transactional
applications. It is an industry leader in the powerful new category of databases called distributed
SQL.

YugabyteDB is full-featured, offering continuous availability, and it can scale massively
(up or down) on demand. It combines the best features of relational databases with the
benefits of cloud native databases. It is the only distributed SQL database that is hybrid and
multicloud-ready, and multi-API. YugabyteDB is also the most PostgreSQL-compatible,
distributed SQL database on the market today.

YugabyteDB has an innovative architecture, featuring a distributed transactional storage layer
and a pluggable query layer with a PostgreSQL-compatible API and a Cassandra-compatible
semi-relational API. It can be deployed anywhere—on any public cloud infrastructure, private
cloud, Kubernetes, bare metal, and more.

Many financial services companies have embraced YugabyteDB to support a range of innovation
and modernization strategies. Some have top-down initiatives to modernize their database
infrastructure, while others are looking to completely move off of proprietary database software.
Most are building cloud native applications and require a scalable relational data layer. Many need
powerful transactional support that spans regions. We are also seeing a lot more exploratory
topologies as the need for distributed SQL grows.

YugabyteDB—
DISTRIBUTED SQL
FOR FINANCIAL
SERVICES

12| The Database Architect’s Guide to Distributed SQL for Financial Services

https://www.yugabyte.com/yugabytedb/

So now that we have discussed the “what” when it comes to
distributed SQL and YugabyteDB, let’s discuss the “why” around
YugabyteDB. Why are banks, fintechs, and other financial services
firms moving their most mission-critical, high-volume transactional
workloads to YugabyteDB? Nine little reasons:

1. PostgreSQL Compatibility

2. Security

3. High Availability

4. Horizontal Scalability

5. Multicloud/Hybrid Cloud

6. Open Source

7. Geo-Distribution

8. Transactional Consistency

9. Operational Simplicity

So what really accelerated our
interest in distributed SQL? It came
down to two things—resiliency and
scalability. It was about ensuring
a resilient, active-active solution
that could support a relational
data model and ACID-compliant
transactions, along with the ability
to achieve near linear horizontal
scalability.

Head of Database Strategy and Innovation
Top 5 Multinational Financial Services Company

“

13| The Database Architect’s Guide to Distributed SQL for Financial Services

1. PostgreSQL Compatibility

PostgreSQL is a widely used, open source database management system with decades of active
development, a thriving community, and a rich ecosystem of extensions and tools. However,
despite its popularity, PostgreSQL was not designed for modern, dynamic cloud platforms or
the needs of cloud native, geo-distributed applications.

YugabyteDB solves this by providing the most complete set of PostgreSQL-compatible
features in a distributed SQL database tailored-made for the cloud. By ensuring PostgreSQL
compatibility, developers can work with familiar features, applications, drivers, and tools so
they can immediately be productive.

Wire-Protocol Compatibility.
Allows PostgreSQL client drivers to
communicate with the database so that
developers experienced with PostgreSQL
can easily build applications.

Feature Compatibility.
Supports the advanced features in
PostgreSQL— triggers, partial indexes,
and stored procedures—that help
financial services firms get the most out
of their data.

Syntax Compatibility.
Allows the database to parse the
PostgreSQL syntax so developers can
use some of PostgreSQL’s tools and
frameworks.

Runtime Compatibility.
Ensures that the database will match
the PostgreSQL execution semantics
at runtime. This is the highest level of
PostgreSQL compatibility, automatically
implying that the other three compatibility
metrics are met.

PostgreSQL Compatibility Levels

1

4

2

3

14| The Database Architect’s Guide to Distributed SQL for Financial Services

PostgreSQL
popularity
has increased
nearly 3x since
2014 thanks
largely to its
highly active
open source
community.

2. Security

YugabyteDB was designed and built from the ground up with security in mind. Financial
services organizations can maintain a robust security posture with built-in controls like LDAP
authentication, role-based access control (RBAC), data encryption at rest and in transit (TLS),
audit logging, row-level security (RLS), and column-level permissions.

YugabyteDB Aeon, our self-managed database-as-a-service (DBaaS) offering, also
simplifies security operations by providing automatic security key rotation, rolling software
updates, and other capabilities.

3. High Availability

For many financial services applications, downtime is not an option. The impact can be disastrous,
both financially and reputationally. However, even with the best design, infrastructure and
network outages are inevitable in today's cloud-centric world. The question then becomes: how
to survive an outage when application and data downtime is unacceptable?

Legacy databases rely on older replication models and manual processes to switch to standby
configurations during failures. Further hands-on-keyboard intervention is required to reconcile
all final transactions for complete data consistency.

Distributed SQL databases, like YugabyteDB, maintain continuous availability during
infrastructure failures. Critical services remain available during node, zone, region, and data
center failures. They heal themselves and automatically re-replicate data, enabling fast failover,
so there’s zero downtime during maintenance tasks like software upgrades, security patching,
and distributed backups.

4. Horizontal Scalability

Scalability is crucial for financial organizations operating across multiple regions. Horizontal
scalability is part of distributed SQL’s DNA. It’s a core feature, allowing for effortless scaling of
writes and strongly consistent reads. You can add storage and connections merely by adding
nodes to the cluster. This means no more designing and maintaining shards, read replicas, or
other app-level scaling features. There is no need for specialized hardware since YugabyteDB
automatically recognizes and rebalances the data load to utilize all available resources. It delivers
high performance with low latency and minimal effort.

Distributed SQL is important to us because our SLAs are very
low, so we have to be very strong in our ability to scale and in
our ability to do so in under 200 milliseconds.
Jay Duraisamy, SVP of Technology for Data and Analytics, Fiserv “ 16| The Database Architect’s Guide to Distributed SQL for Financial Services

https://www.yugabyte.com/compare-products/

81% OF PUBLIC CLOUD USERS CLAIM TO
USE MULTIPLE CLOUDS TO:

• Reduce operating and infrastructure costs by
avoiding vendor lock-in.

• Improve application resiliency and redundancy
through the use of geographically distributed
data centers.

• Improve customer experience and performance
optimization. By choosing a data center closest
to end users they can serve the requested data
with minimum latency.

• Achieve data compliance with laws such as the
EU's GDPR which requires data to be held in
particular geographical locations.

• Expand into new markets by taking advantage
of regional data centers.

5. Multicloud and Hybrid Cloud

Want to avoid being locked-into a specific cloud provider? With YugabyteDB’s cloud native
architecture, you can deploy on the clouds of your choice. You can seamlessly manage your
distributed databases across Google Cloud (GCP), Amazon Web Services (AWS), Microsoft
Azure, VMware Tanzu, Red Hat, and even on-premises data centers.

Why Organizations Choose a Multicloud Strategy, Gartner

17| The Database Architect’s Guide to Distributed SQL for Financial Services

https://www.gartner.com/smarterwithgartner/why-organizations-choose-a-multicloud-strategy

6. Open Source

Open-source software has been proven to be the most successful way to develop and distribute
business-critical infrastructure software. It offers users absolute freedom Day 1, making
exponential adoption growth possible.

As adoption grows, it powers the rapid feedback loop needed for fast, reliable, and high quality
collaborative feature development. Security, ecosystem integrations, extensibility frameworks,
etc. just get stronger.

Proprietary infrastructure software with a free-to-use tier can be successful, but at a much
slower rate due to the reduced levels of collaborative development and a slower feedback loop.
In turn, this increases the risk that the software will fail to gain market acceptance and fade
away.

YugabyteDB is a fully open-source database. It eliminates adoption barriers and lowers the
risk of failure, making it an extremely attractive option for developers creating mission-critical
applications and operations engineers running them on cloud-native platforms.

The decision to make YugabyteDB
open source was heavily influenced
by the success and popularity of
PostgreSQL, which is not only open
source, but also transparent and
widely adopted.

Karthik Rangatharan,
CTO and Co-Founder of Yugabyte

“

18| The Database Architect’s Guide to Distributed SQL for Financial Services

7. Geo-Distribution

Financial services firms are deploying globally distributed, microservices-based applications to
deliver always-on, highly responsive services worldwide. But deploying application instances
across multiple geographies and serving user data from a single location is just not enough to
meet resiliency, performance, and compliance objectives.

A geo-distributed data layer is crucial to achieve faster response times for real-time interactions,
ensure the data layer is resilient to zone and region failures in the cloud, and meet data protection
and privacy laws.

Luckily, YugabyteDB offers the most flexible deployment options for geo-distributed
environments, including synchronous and asynchronous data replication and geo-partitioning.
These options help financial services firms meet the high-performance demands of their
customers and regulatory compliance thresholds.

We want to make sure
our data is where it
needs to be so that we
can scale—not only
across zones but also
across regions—and
handle different failure
scenarios seamlessly.
So, to make sure
that the integrity of
the transaction is
maintained across zones
and regions…that’s
really why we began
looking at distributed
SQL databases.

Managing Director of
Infrastructure, Operations,
and Cloud Platforms
Top 10 Multinational
Financial Services Company

“

19| The Database Architect’s Guide to Distributed SQL for Financial Services

AZ 1

AZ 2AZ 3

Region 1

Region 2

Region 3

Source
Cluster

Unidirectional
Async Replication

Reads Writes

Sink
Cluster

Reads Writes

X

MULTI-ZONE CLUSTER
Deploy the nodes of a YugabyteDB cluster in different
zones within the same region.

Benefits:
• Resilient to a zone failure

• High availability

• Strong consistency

• Low read and write latency within the region

Tradeoffs:
• Higher read/write latencies for remote regions

• Lack of resilience to region-level outages, such as natural
disasters

MULTI-REGION
“STRETCHED” CLUSTER
Deploy the nodes of a YugabyteDB cluster in different
regions.

Benefits:
• Resilient to a region failure

• High availability

• Consistent writes; tunable reads

• Low read and write latency within the region

Tradeoffs:
• Write latency can be high depending on distance and/or

network packet transfer times

• Follower reads trade consistency for latency

6 GEO-DISTRIBUTED
DEPLOYMENT
OPTIONS YOU WANT
TO CONSIDER

A YugabyteDB cluster consists of 3 or more
nodes. They communicate with each other
and distribute data among themselves.

Cluster
#1

Bidirectional
Async Replication
(Last Writer Wins)

Reads Writes

Cluster
#2

Reads Writes

AZ 1

Read Replica

Read Replica

AZ 2AZ 3

AZ 1

AZ 2AZ 3

AZ 1

AZ 3

id geo_location

1 US
4 US id geo_location

2 India

3 EU
5 EU

id geo_location

AZ 1

AZ 2AZ 3

Region 1

Region 2

Region 3

Source
Cluster

Unidirectional
Async Replication

Reads Writes

Sink
Cluster

Reads Writes

X

Deploy YugabyteDB cluster across two data centers or regions
with asynchronous replication (active-active configuration)

Benefits:
• Resilient to a zone failure, if nodes of each cluster are

deployed across zones

• Strong consistency in source cluster; timeline consistent
in sink cluster

• Low read and write latency within either cluster

Tradeoffs:
• Database triggers won't fire since xCluster bypasses

query layer, potentially leading to unexpected behavior

• Conflicting writes in separate universes can violate unique
constraints and cause inconsistencies in the table and
index

• The active-active mode does not support auto-increment
IDs, so UUIDs are recommended instead

Benefits:
• Resilient to a zone failure, if nodes of each cluster are

deployed across zones

• Strong consistency

• Low latency within region; high latency across regions

Tradeoffs:
• Best suited for datasets that can be logically partitioned

• Accessing pinned data from outside the region incurs
cross-region latency

ROW-LEVEL GEO-PARTITIONING
WITH DATA PINNING
Pin data to regions for compliance and lower latencies

Deploy YugabyteDB cluster across two data centers or
regions with asynchronous replication (active-passive
configuration)

Benefits:
• Resilient to a zone failure, if nodes of each cluster are

deployed across zones

• Strong consistency in source cluster; timeline consistent
in sink cluster

• Low read and write latency within the source cluster
region

Tradeoffs:
• High latency for clients outside source cluster region

• Database triggers won't get fired since xCluster bypasses
the replicated records query layer

MULTI-REGION CLUSTERS
WITH BI-DIRECTIONAL
ASYNCHRONOUS REPLICATION

MULTI-REGION CLUSTERS
WITH UNIDIRECTIONAL
ASYNCHRONOUS REPLICATION

Cluster
#1

Bidirectional
Async Replication
(Last Writer Wins)

Reads Writes

Cluster
#2

Reads Writes

AZ 1

Read Replica

Read Replica

AZ 2AZ 3

AZ 1

AZ 2AZ 3

AZ 1

AZ 3

id geo_location

1 US
4 US id geo_location

2 India

3 EU
5 EU

id geo_location

8. Transactional Consistency

By having transactional consistency in the data layer, YugabyteDB eliminates the burden of
managing consistency across geo-distributed transactional applications and having to develop
and maintain complex code.

YugabyteDB is fully ACID compliant across multiple rows, shards, and nodes without any scale,
resiliency, or performance tradeoffs.

9. Operational Simplicity
With YugabyteDB Aeon, our fully managed database-as-a-service (DBaaS), you can focus on
building business value while we take care of the database. Our goal is to simplify the entire
process by providing data-layer services that streamline your operations.

For those that want more control and management over their data, YugabyteDB Anywhere allows
financial services firms to effortlessly deploy YugabyteDB in their own data center or preferred
cloud environment. Our built-in orchestration engine makes Day 2 operations a breeze, so you
can rest easy knowing that your database is in good hands.

Source: Geo-Distribution in YugabyteDB: Engineering Around the Physics of Latency

READ REPLICAS
Replicate data asynchronously to one (or more) read
replica clusters

Benefits:
• Resilient to a zone failure, if nodes of primary cluster are

deployed across zones

• Strong consistency in primary cluster; timeline consistent in
replica clusters

• Low latency within region; write latency across regions
dependent on distance

Tradeoffs:
• The primary cluster and read replicas are correlated, so

adding read replicas does not improve resilience

• Read replicas cannot accept writes, leading to high write
latency from remote regions even with a nearby read replica

22| The Database Architect’s Guide to Distributed SQL for Financial Services

https://www.yugabyte.com/compare-products/
https://www.yugabyte.com/blog/geo-distribution-in-yugabytedb-engineering-around-the-physics-of-latency/

Dimitri Farafonov, VP and Fellow Architect at Fiserv, recently sat down with Karthik Rangatharan,
CTO and Co-Founder of Yugabyte, to discuss his role at this top global fintech and payments
company.

During their conversation, they discussed the three priorities that guide Fiserv’s database
selection process along with the complexities involved in achieving low latency, data consistency,
and massive bi-directional scalability, which are critical to Fiserv's operations.

INTERVIEW WITH
DIMITRI FARAFONOV,
VP AND FELLOW
ARCHITECT AT
FISERV

23| The Database Architect’s Guide to Distributed SQL for Financial Services

Q: Can you provide more information about the role
Fiserv plays in the financial services industry and how that
impacts your approach to your role and responsibilities?

We help banks, big and small, to efficiently operate their credit and debit businesses. To achieve
this, our solution is designed to be multitenant, allowing us to process transactions for multiple
clients simultaneously. This adds another level of complexity. In addition, the banking industry
is heavily regulated, which means we must comply with internal and external regulations,
adding even more complexity to our work. As a result, we must follow numerous processes and
protocols, which are constantly being reviewed to ensure we meet the highest standards.

The sheer volume of transactions we handle is enormous, with our online issuing business alone
processing up to 15,000 financial transactions per second. In addition, there are over a billion
account cards on file. It is just very large, with challenges that must be tackled on a massive
scale. As a result, our focus is on delivering solutions that are scalable, highly available, and
equipped with disaster recovery and data replication capabilities. These are the challenges we
primarily deal with on a daily basis.

Q: What are some of Fiserv’s priorities in terms of how you
look at your market and how you work with vendors?

Our vendor selection process is guided by our priorities, with security being our top concern.
Stability follows closely behind, with a focus on ensuring our software solutions are reliable and
robust. Client satisfaction is also a key factor, which actually deals with how fast we can react to
changes. So when we talk about vendor selection and how we work with Yugabyte, we always
start with security.

For us, security and stability rank higher than innovation. We actually cut many “cutting edge”
solutions from our selection process because they were not ready for primetime financial services
applications. We only select the most secure and the most stable software to implement. For
us, innovation usually entails taking very stable solutions and creating the right mix. We do a
lot of integration work, and most of the movement we are making into real-time processing has
everything to do with how we can react to changes quickly.

When it comes to databases, we distinguish between two categories: data capture and data
aggregation. Data capture involves copying live transactions for audit purposes or to save
for future processing. Data aggregation, on the other hand, requires transactionality, such as
updating account balances after a purchase.

So when we make a database determination, again, we focus on our three priorities—security,
production stability, and client satisfaction. Then we consider all the new demands of data
capturing and data aggregation.

24| The Database Architect’s Guide to Distributed SQL for Financial Services

Q: You've mentioned that security is crucial, but would you
take us through your evaluation process when considering
different features of a database? Also, could you explain
what brought you to YugabyteDB and which of the criteria
it met during the selection process?

We work with multiple vendors. In fact, if you name a database, we probably have it. We
ran open-source Cassandra for years and have vendor-managed Cassandra instances as well.
But let me take a step back. As you know, in traditional, on-prem development, infrastructure
capacity is allocated upfront based on predictions for how many clients will ultimately need to
be onboarded for that product. And you usually go with the best-case scenario because you
want everyone to love the product. So you allocate for maximum capacity, with enough physical
services to manage it, up front. This often results in unused databases sitting idle for years until
enough clients are onboarded to justify their existence.

So as we were moving to the cloud, our conversations with YugabyteDB and other vendors
were focused on starting small and growing the database cluster as needed, without upfront
infrastructure capacity allocation. We didn’t want to buy 25 servers upfront. Our ask was to
only pay for what we needed at that moment in time in terms of infrastructure, licensing, and
compute allocations.

To meet both our internal high availability commitments and our customer SLAs, we mandate
replication within the same region or data center. We also require cross-regional and cross-
data center replication. So we run in two regions, rather than three, but we replicate in each
region. So we triple replicate.

Our first YugabyteDB implementation was a reporting database. We used the CQL language with
local quorum within a region and another copy in a different region, with eventual consistency
for reporting. However, in our second implementation, we switched to SQL and the PostgreSQL
client to ensure SQL transactionality and maintain records in a consistent state. We guarantee
transactionality within one region with eventual consistency across the other region, and have
set up preferred routes for disaster recovery events. This approach, which we call "active, active
prefer local," allows for low latency transactionality in one region while maintaining a disaster
recovery strategy in the other region. In this setup, one region can be constantly processing
while the other is used for disaster recovery, with each region acting as primary and secondary
for different clients. This enables us to achieve transactionality with low latency in one region
while also having a disaster recovery strategy in the other.

25| The Database Architect’s Guide to Distributed SQL for Financial Services

Q: So you're using both the Cassandra interface (CQL) and
PostgreSQL interface to the Yugabyte database? And this
is based on the applications’ needs?

Yes, that's correct. However, we maintain two separate database clusters to cater to the specific
needs of each application. One application focuses on data capture and stores it for end-of-
day reporting, while the other is a real-time API for a tracking system that involves lookups and
insertions throughout the day.

Our approach entails utilizing SQL or CQL inserts for data capture and report generation while
using transactional locking of SQL for standard production operations in the other application.

Q: What are some of your security requirements and how
has that impacted your migration to the cloud and your
relationships with the vendors you work with?

We demand a lot when it comes to security, making it difficult for many vendors to work with
us. We demand a lot, and we don't compromise on security requirements.

It’s not solely about data access. Yes, there does have to be access levels, but we have very
specific auditing requirements for those access levels. For example, we categorize every
interaction within the database from both an application and administrative perspective. Every
SQL command run is audited. But the difficulty is not with the audit; the difficulty comes in
terms of integrating it with an existing system, especially if that system is in a different region.
Because the security integration is managed by different groups, we must submit our audit data
to them for evaluation. So it’s a process.

When selecting vendors, we have a checklist of security requirements, including access levels,
specific auditing requirements, encryption at rest, and various other security protocols that
must be implemented. We do not compromise on security protocols, and we mandate vendors
implement specific ciphers and protocols. Encryption at rest is mandatory, even if we don't
store PCI data in the cloud.

But once we select the vendor we are not done. We continually submit enhancements to vendors,
such as token authentication and user management integration. Choosing a database-as-a-
service provider is challenging due to our long checklist of security requirements. Because
of that, we have a goal to achieve platform independence by building a private cloud based
on Kubernetes and bringing YugabyteDB on-premises while applying the same protocols and
requirements as the public cloud.

26| The Database Architect’s Guide to Distributed SQL for Financial Services

We intentionally make it challenging to work with us
because if we fail to post your check to your account,
you will definitely notice. We take our impact on people's
lives seriously, and that's why all of our processes are
designed with purpose. We prioritize security and
stability over being on the cutting edge of technology.

–Dimitri Farafonov, VP and Fellow Architect at Fiserv

Q: So tell me a little bit more about that.

Our goal is to achieve true platform independence, and we're starting by constructing our own
private cloud. We develop our applications to standards, utilizing a Java persistence API to
interact with YugabyteDB without any reference to Yugabyte code. Let me explain why.

Previously, we encountered challenges when developing applications for specific databases.
As we expanded, we had to rewrite the code for different regions that didn't support those
databases. However, by coding to a standard, we can identify the most suitable PostgreSQL
vendor for each region. That’s why we write applications for Postgres and employ Yugabyte as
the vendor that supports Postgres for us. This approach enables us to replace YugabyteDB with
other Postgres vendors as required, thereby achieving the ultimate platform independence.

Q: So how has the relationship/partnership been between
Fiserv and Yugabyte from a support standpoint? What
is your confidence in deploying YugabyteDB into your
mission-critical apps?

At Fiserv, we have a centralized procurement process for vendor onboarding. Once vendors
meet security protocols and other requirements, we establish an enterprise relationship with
them. We then implement the vendor's services, making them available for anyone within Fiserv
to use. We have an enterprise relationship with YugabyteDB, and it is deployed across multiple
lines of businesses here.

“

27| The Database Architect’s Guide to Distributed SQL for Financial Services

Interested in additional interviews with Fiserv?

So now let’s chat for a moment about what it is like to work with us operationally. We’ve talked
about the vendor evaluation process, but once a vendor passes the evaluation, we enter the
operational phase of our relationship. As we work with our vendors across the company, we
need a way to manage multiple clusters consistently, rather than managing them individually.
This is because scaling and efficiency rely on sharing actual solutions.

Creating consistent operational models and databases that fit those models is very important
because our distributed application DBAs manage multiple databases, and they work with the
vendors specifically for their operational requirements.

This is why I highlighted the importance of having an SQL client that can interact with multiple
SQL databases. YugabyteDB should be no different from any other SQL database that our
teams work with.

Day 2 operations can be difficult enough, so having consistent operational models and databases
that fit within those models are essential for scalability and efficiency. This is why Fiserv pushes
all vendors towards it, furthering our reputation as being hard to work with. But for Fiserv to
scale, we need consistency.

Security mandates drive consistency as well. We coordinate patching, both at the operating
system and software levels, with all vendors following the same schedule. This can be challenging
to manage operationally, especially when implementing solutions in different regions and clouds
internationally.

Fiserv is trying to push for consistency and uses cookie-cutter recipes to solve problems once
instead of solving them multiple times. Coding and implementing to standards are essential;
otherwise, you are faced with a nightmare to manage.

28| The Database Architect’s Guide to Distributed SQL for Financial Services

https://www.yugabyte.com/blog/tag/fiserv/

YugabyteDB has become a critical database for some of the world’s most demanding financial
services companies, including Wells Fargo, Charles Schwab, Fiserv, and Temenos.

These industry leaders chose YugabyteDB because it delivers an open source, cloud native,
distributed database that uniquely combines enterprise-grade relational database capabilities
with the horizontal scalability and resilience of cloud native architectures.

YugabyteDB IN
FINANCIAL SERVICES

“
“

...YugabyteDB delivered up to 98% lower latency,
greatly enhancing our customers’ experiences…”
Fiserv.

...With YugabyteDB, there was 50% cost savings compared to
SQL Server implementation providing the flexibility to explore
new cases and scale faster…” Xignite.

YugabyteDB provides several significant advantages to
leading financial services firms, including:

• Improve digital customer experiences by accelerating developer productivity and
focusing on new, innovative customer services

• Navigate regulations and compliance by storing data where it is needed or mandates
and effectively controlling access.

• Developing new revenue streams, boosting growth, and reducing operating costs with
new, personalized data-centric services

• Modernizing legacy systems to power new sets of cloud native applications and update
existing apps at the pace that fits your business strategy.

29| The Database Architect’s Guide to Distributed SQL for Financial Services

https://www.yugabyte.com/blog/wells-fargo-customer-fireside-chat/
https://www.yugabyte.com/blog/charles-schwab-customer-fireside-chat/
https://www.yugabyte.com/blog/distributed-database-fintech-innovation/
https://www.yugabyte.com/blog/yugabytedb-scales-temenos-cloud-platform-100k-business-transactions/
https://www.yugabyte.com/wp-content/uploads/2022/10/Solution-Brief_-Financial-Services.pdf
https://www.yugabyte.com/wp-content/uploads/2022/10/Solution-Brief_-Financial-Services.pdf

We wanted to create a cloud-native version of Postgres, while addressing three key
concerns. First, to ensure resilience and availability in the face of potential failures of
commodity cloud compute. Second, we had to make sure we could scale in and out
quickly by leveraging available compute through an API. Finally, we needed to tackle the
challenge of data replication across multiple regions. These were the three critical issues
we focused on when reimagining Postgres for YugabyteDB.

Karthik Rangatharan, CTO and Co-Founder of Yugabybte

I think the world has moved from monolith to microservices and having microservices on
top of a monolithic platform only allows you to scale to a certain extent. That's why many
data-centric products and solutions move towards a NoSQL architecture. And as we know,
NoSQL comes with certain trade-offs. I always look for a solution that can merge these
two. YugabyteDB presents a solution with both PostgreSQL grammar and Cassandra
grammar as well as being fully ACID compliant; it seems to be the next evolution of NoSQL
architecture.

Jay Duraisamy, SVP of Technology for Data and Analytics Fiserv“
“

ABOUT
YUGABYTE
Yugabyte is the company behind YugabyteDB, the open source, high-performance distributed
SQL database for building global, cloud-native applications. YugabyteDB serves business-critical
applications with SQL query flexibility, high performance and cloud-native agility, thus allowing
enterprises to focus on business growth instead of complex data infrastructure management. It
is trusted by companies in cybersecurity, financial markets, IoT, retail, e-commerce, and other
verticals. Founded in 2016 by former Facebook and Oracle engineers, Yugabyte is backed by
Lightspeed Venture Partners, 8VC, Dell Technologies Capital, Sapphire Ventures, and others.

Get started in minutes with a free, full-featured trial of YugabyteDB Aeon. DBaaS with confidence.

Have a question?
Contact us. We cannot wait to hear from you.

https://cloud.yugabyte.com/signup
http://www.yugabyte.com/
http://www.yugabyte.com/
mailto:contact@yugabyte.com
https://github.com/yugabyte/yugabyte-db
https://communityinviter.com/apps/yugabyte-db/register
https://twitter.com/yugabyte
https://www.linkedin.com/company/yugabyte/
https://www.youtube.com/channel/UCL9BhSLRowqQ1TyBndhiCEw

