

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Distributed SQL
Databases

Yugabyte Special Edition

by Floyd Smith

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Distributed SQL Databases For Dummies®, Yugabyte Special Edition

Published by

John Wiley & Sons, Inc.

111 River St.

Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2023 by John Wiley & Sons, Inc., Hoboken, New Jersey

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the
prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,
NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com,
Making Everything Easier, and related trade dress are trademarks or registered trademarks of
John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be
used without written permission. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHORS HAVE
USED THEIR BEST EFFORTS IN PREPARING THIS WORK, THEY MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTATIVES, WRITTEN
SALES MATERIALS OR PROMOTIONAL STATEMENTS FOR THIS WORK. THE FACT THAT AN
ORGANIZATION, WEBSITE, OR PRODUCT IS REFERRED TO IN THIS WORK AS A CITATION AND/
OR POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE PUBLISHER
AND AUTHORS ENDORSE THE INFORMATION OR SERVICES THE ORGANIZATION, WEBSITE, OR
PRODUCT MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. THIS WORK IS SOLD WITH
THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING PROFESSIONAL
SERVICES. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
YOUR SITUATION. YOU SHOULD CONSULT WITH A SPECIALIST WHERE APPROPRIATE. FURTHER,
READERS SHOULD BE AWARE THAT WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED
OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.
NEITHER THE PUBLISHER NOR AUTHORS SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY
OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

ISBN 978-1-394-16889-7 (pbk); ISBN 978-1-394-16890-3 (ebk)

For general information on our other products and services, or how to create a custom
For Dummies book for your business or organization, please contact our Business Development
Department in the U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/go/
custompub. For information about licensing the For Dummies brand for products or services,
contact BrandedRights&Licenses@Wiley.com.

Publisher’s Acknowledgments

Some of the people who helped bring this book to market include the following:

Project Editor: Elizabeth Kuball

Acquisitions Editor: Ashley Coffey

Editorial Manager: Rev Mengle

Client Account Manager:
Cynthia Tweed

Production Editor:
Tamilmani Varadharaj

Special Help: Rachel Pescador,
Michael Haag, Suda Srinivasan

http://www.wiley.com
http://www.wiley.com/go/permissions
mailto:info@dummies.biz
http://www.wiley.com/go/custompub
http://www.wiley.com/go/custompub
mailto:BrandedRights&Licenses@Wiley.com
http://Dummies.com

Introduction 1

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

Data-driven organizations need an agile, cloud-native data-
base that matches their modern cloud infrastructure and
application architecture. The new data layer must be scal-

able, highly available, secure, and flexible, without locking the
organization in to a single vendor.

About This Book
In this book, I describe how monolithic databases of the past
fall short of the challenges of today’s cloud-native applications.
Initial responses such as NoSQL databases, which lack structure,
and NewSQL databases, which aren’t fully scalable, have failed
to meet the challenge. Only a new approach, distributed SQL, can
help organizations take full advantage of the new capabilities
available in the cloud. You’ll see the benefits of this new approach
and how it meets the needs of leading industry segments across a
wide range of use cases.

Icons Used in This Book
Throughout the book, I use icons to indicate special information.
Here’s a guide to what those icons mean:

The Tip icon indicates information you can apply to your own
projects to make them work better, whatever technology you have
at hand. Tips can save you time and help you avoid frustration.

The Remember icon highlights information that’s worth retain-
ing after you’ve put down this book.

The Technical Stuff icon gives you detailed information related to
a particular topic. Information marked by this icon isn’t necessary
to getting the job done, but it provides depth and interest.

2 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Beyond the Book
This book introduces you to distributed SQL and shows you how
you can use it to enable critical applications in your organization
for the cloud. If you want resources beyond what this book offers,
here’s some insight for you:

 » “Migrating from Monolithic to Cloud Native Operational
Databases” (https://info.yugabyte.com/2022-
white-paper-migrating-from-monolithic-to-cloud-
native-lp): A white paper from Yugabyte that describes
how new software development and delivery models require
new database technology

 » “Distributed SQL vs. NewSQL” (www.yugabyte.com/blog/
distributedsql-vs-newsql/): A blog post from Yugabyte
that describes how NewSQL falls short of meeting the
challenges of cloud-native applications, while distributed
SQL meets them

 » “Why Are NoSQL Databases Becoming Transactional?”
(www.yugabyte.com/blog/nosql-databases-becoming-
transactional-mongodb-dynamodb-faunadb-cosmosdb/):
A blog post from Yugabyte that explains why NoSQL
databases are trying to add transaction capabilities and
describes how distributed SQL does that job better

https://info.yugabyte.com/2022-white-paper-migrating-from-monolithic-to-cloud-native-lp
https://info.yugabyte.com/2022-white-paper-migrating-from-monolithic-to-cloud-native-lp
https://info.yugabyte.com/2022-white-paper-migrating-from-monolithic-to-cloud-native-lp
https://www.yugabyte.com/blog/distributedsql-vs-newsql/
https://www.yugabyte.com/blog/distributedsql-vs-newsql/
https://www.yugabyte.com/blog/nosql-databases-becoming-transactional-mongodb-dynamodb-faunadb-cosmosdb/
https://www.yugabyte.com/blog/nosql-databases-becoming-transactional-mongodb-dynamodb-faunadb-cosmosdb/

CHAPTER 1 The Rise of the Modern Data-First Enterprise 3

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

IN THIS CHAPTER

 » Understanding data-first business needs

 » Speeding digital transformation

 » Defining the modern data stack

The Rise of the Modern
Data-First Enterprise

Enterprises build and deploy applications differently today
compared to a decade ago. Proprietary scale-up computing
infrastructure has given way to scale-out commodity servers

in the cloud. Microservices have replaced monolithic applica-
tions. Waterfall development and organizational silos are out;
agile development and DevOps are in.

Why? Because you need to innovate faster to seize new opportu-
nities ahead of your competitors. These trends, which have been
underway for several years, accelerated during the pandemic and
with the rise of digital-first initiatives.

Cloud infrastructure and cloud-native applications promise speed
and agility like never before. You can now provision servers in a
matter of minutes rather than days, and build and release your
application in a fraction of the time it used to take. This has
enabled businesses to go from shipping one big release every few
months to delivering several new releases daily.

4 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

While significant progress and investments have been made in
the digital transformation of applications and infrastructure, one
part of the tech stack has remained largely unchanged: the trans-
actional database.

Cloud-native applications still rely on traditional monolithic
databases for their systems of record and engagement. These
databases, designed before the cloud era, were not architected
for the demands of modern applications. They take days or weeks
to provision and configure. Scaling entails manual data sharding
(dividing the data up into smaller chunks using a database field
designated as the shard key) or deploying a cache in front of the
database and dealing with coherence issues. Resilience requires
bolt-on replication solutions. Geo-distributing the database for
compliance or performance is a nonstarter. The result: expensive
trade-offs, slow innovation, complex operations, and poor cus-
tomer experience.

Modern applications and microservices require a modern cloud-
native transactional database architected with the needs of these
applications in mind. In this chapter, I describe the database
requirements of today’s applications.

Understanding What Modern
Data-First Businesses Need

Businesses today are increasingly data-first. They understand
that delivering new services and improving their customer expe-
riences depends on capturing and delivering accurate and fast
data. They start with a data architecture that considers how data
can be quickly, efficiently, and securely captured, stored, and
used. They implement this strong data foundation before they
build applications that use the data.

Why is data a top priority for these businesses? Transactional
data is at the heart of customers’ experiences in every industry.
Retailers depend on mobile app shopping carts and real-time
inventories to help customers make purchasing decisions. Financial
services companies need to support exponential increases in
micropayments, constant checking of account balances and
transactions, and a geographically distributed customer base.
Essentially, transactional data is at the core of what these compa-
nies must do to meet their business goals.

CHAPTER 1 The Rise of the Modern Data-First Enterprise 5

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The distributed applications using this data empower their cus-
tomers, streamline operations, and support fast innovation. Those
applications are increasingly based on microservices running in
containers and Kubernetes across private and public clouds. And
they have requirements that can’t be met by monolithic databases
or eventually consistent alternatives like NoSQL. Modern applica-
tions require the following six key characteristics.

High performance
Modern applications require a database that delivers high per-
formance along with the deployment flexibility of consistent
transactions across clouds. Providing high performance requires
support for the following:

 » High ingest rates (for example, when bringing in streaming
data from external sensors or other sources)

 » Fast transactions, allowing applications to experience low
latency on data-layer operations

 » Fast data transfers out of the database (for example, when
delivering query results)

For business-critical enterprise applications, it’s not uncommon
for a modern database to be expected to handle 1 million transac-
tions or more per second, while supporting thousands of concur-
rent connections.

Massive scaling on demand
As application demands surge, which can happen at unexpected
times in todays’ viral world, the database needs to scale quickly
without incurring any downtime.

In the world of transactional databases, scaling can mean being
able to process a greater number of transactions in parallel or
storing more data. Traditional vertical scaling is costly and com-
plex. In a cloud-native world, we need to scale seamlessly by add-
ing new servers (compute and storage resources) and letting the
system intelligently rebalance across the cluster. And then if the
demand subsides, the database should be able to shrink back to
save costs.

6 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Continuous availability
Given the criticality of the transactional database for applications,
it’s essential that these databases remain available, surviving just
about any disaster scenario. And in the case of such an event, they
need to recover quickly if the server they’re running on goes down.
Every minute a database is down can mean millions of dollars of
lost revenue and poor customer experience.

Deployment flexibility
Modern applications require a consistent data layer that provides
a wide range of deployment flexibility, including

 » The ability to run in public cloud, private cloud, and hybrid
cloud environments

 » The ability to run in containers (the modern option), on
virtual machines, or on bare metal

 » The ability to run in any environment based on the most
widely used container orchestration software, Kubernetes

 » Support for a wide range of replication and geo-distribution
options

By meeting these requirements, a database can support any
application, whether internal to the business or customer-facing,
legacy or modern, entirely designed and supported by the busi-
ness or composed of one or more external components.

Standard interface
No one wants to learn another proprietary language or interface
just so they can talk to a new database. Modern databases need to
offer interfaces that are compatible with familiar and widely used
database application programming interfaces (APIs).

PostgreSQL is the most popular choice for compatibility because it
is widely used by enterprises and is also open source. As a result,
PostgreSQL features a rich ecosystem of compatible frameworks,
applications, drivers, and tools. The best PostgreSQL-compatible
databases are not only wire compatible (you can communicate
with the database using PostgreSQL client drivers) but also feature
compatible (the database supports all the features of PostgreSQL
including advanced features like triggers, partial indexes, and
stored procedures).

CHAPTER 1 The Rise of the Modern Data-First Enterprise 7

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

A modern, data-first business requires its data layer to be plug-
and-play with all these different components needed for success-
ful application development and delivery. Offering PostgreSQL
compatibility allows developers to be instantly productive on the
new database.

Compatibility across a limited set of functionalities is not true
compatibility. A truly PostgreSQL-compatible database must
also support advanced relational database management system
(RDBMS) features, such as triggers, functions, stored procedures,
and strong secondary indexes.

A security-first mindset
Security is crucial to all modern applications throughout devel-
opment and delivery. This is especially true across the data layer,
comprising not only data at rest, but data in transit, as required to
complete database functions.

A modern database must be built from the ground up with data
security in mind so that organizations can maintain a robust
security posture across an increasingly distributed footprint.

Data must be encrypted at rest and in flight. The database must
support multi-tenancy and encrypt data separately per tenant.
And the data has to reside in specified geographic regions to meet
compliance requirements and to support geographically based
access controls.

DO TRADITIONAL DATABASES
MEET MODERN REQUIREMENTS?
Traditional databases were developed before the public cloud and
cloud-native technologies like containers and Kubernetes were
widely used.

As a result, they often work well enough for small and new projects
but fail to deliver the scale, flexibility, and simplicity expected of
cloud-native solutions.

(continued)

8 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Accelerating Digital Transformation
Digital transformation is real. Today, companies from small
and medium-size businesses, to start-ups, and up through the
enterprise are migrating mission-critical applications to a cloud-
native IT stack:

 » Old apps: Legacy, monolithic application architectures
running in on-premises data centers

 » New apps: Applications running on modern microservices
architectures using containers and Kubernetes, along with
other cloud-native infrastructure technologies, and running
on public, private, or hybrid cloud infrastructure

Learning new, fast-changing technologies for new application
development and delivery, and moving selected legacy applica-
tions to the new platform, is hard work.

The data layer has often been an impediment to developing new
applications and migrating existing ones.

The data layer is stateful by necessity, because persistent data is
the very definition of state. Aligning this stateful data layer with
purposefully stateless application architectures based on contain-
ers and Kubernetes is uniquely challenging.

Developers and organizations with a large set of legacy databases
face a tough decision: At what point does the complexity and costs
of their existing environment reach a point where modernization
is essential to continued growth and innovation? And do they stay
with a newer, proprietary database or cloud-specific database,
or investigate a modern, open solution designed with today’s
(and tomorrow’s) needs in mind?

More developers and organizations are looking for a way to evolve to
a modern distributed database that supports familiar languages, like
PostgreSQL, on a distributed, cloud-native architecture. Newer green-
field projects have learned that starting with a modern data layer is
the best choice for modern applications.

(continued)

CHAPTER 1 The Rise of the Modern Data-First Enterprise 9

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The data layer comprises a persistent database and an in-memory
cache in front of it, accelerating writes and making the most fre-
quently accessed data available much faster than if all data were
confined to disk.

Accelerating the digital transformation process requires a new
approach to the data layer. A modern data stack must match and
serve the modern application stack.

Distributed SQL: The Modern
Transactional Database

What does a modern transactional database serving the needs of
cloud-native application architectures look like?

The functional characteristics of this new database should match
those of modern application architectures, so the desired benefits
from modernization should extend to every part of the applica-
tion, all through application development — which, in the modern
IT world, is continuous — and during application delivery as well.

This is a best-of-both-worlds arrangement: The application con-
sumes data services that deliver familiar capabilities such as rela-
tional data modeling and RDBMS features. But the application and
a distributed SQL data layer share all the best characteristics of
modern architectures:

 » Resilient: A data layer based on distributed SQL is, by
nature, resilient because it isn’t dependent on any single
server, and failover and other resiliency features are easily
supported.

 » Continuously available: Both architecture and operations
of the distributed SQL data layer are carried out to support
continuous availability (for example, by always having two
or more copies of data within the layer).

 » Horizontally scalable: The data layer scales by simply
adding servers to the cluster, just as the application
architecture does.

 » Strongly consistent: Core transactional applications require
strongly consistent data that delivers full ACID properties.

10 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Eventual consistency, the standard for NoSQL databases,
complicates app development and has a major impact on
data accuracy.

ACID stands for atomicity, consistency, isolation, and
durability.

 » Geographically distributed: Resources are geographically
distributed when needed for resiliency and located near
each other when needed for performance, governance,
or other reasons.

 » SQL-compatible and RDBMS-feature compatible: Unlike
with NoSQL, developers and the organization no longer
must give up on relational data modeling, the use of the SQL
query language, and other long-established RDBMS features.

 » Hybrid and multi-cloud ready: The data layer allows for
deployment on-premises, on a cloud of choice, and/or on
multiple clouds, avoiding lock-in.

CHAPTER 2 Where Legacy Transactional Databases Fall Short 11

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

IN THIS CHAPTER

 » Describing traditional database problems

 » Addressing forced trade-offs and
segmentation

 » Identifying challenges with NoSQL and
NewSQL

Where Legacy
Transactional
Databases Fall Short

Monolithic relational database management systems
(RDBMSs) were designed for a world before data pro-
cessing systems were distributed. Both computation and

database operations took place on a single (typically proprietary)
system as modern cloud and cloud-native architectures were far
from being a reality.

If an application needed more transaction processing or data stor-
age capacity from the database, the only way to scale was to move
the database to a server with more resources (central processing
unit [CPU], memory, storage).

The problem with this “scale-up” approach is that there are lim-
its to the speed and capacity of any single computer or server.

These limits increase as technology advances, but data and appli-
cation growth have recently exceeded the speed of these techno-
logical advances. Applications or services can go viral in a matter
of days, and if and when that inflection point hits is impossible

12 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

to predict. In enterprise environments with hundreds of applica-
tions, it’s hard to know which applications will require massive
scale and which will not.

To tackle this uncertainty, distributed systems were designed and
developed in part to deliver rapid scale and agility. This happened
first for computation because the challenges involved are easier
to solve. This shift accelerated the availability of inexpensive, vir-
tually unlimited compute instances in public cloud services that
could be quickly spun up on demand.

Supporting distributed database operations is much more chal-
lenging because of the need to maintain data consistency across
different systems while still delivering acceptable performance.
Creating a single, logical ACID-compliant database out of dis-
tributed storage and compute resources is a significant challenge
(www.yugabyte.com/tech/distributed-acid-transactions).
(Even keeping storage consistent on a single machine presents
challenges; using multiple machines, only more so.)

ACID stands for atomicity, consistency, isolation, and durability.

As database technology has advanced, partial solutions to the
need for distributed databases have appeared. These partial
solutions are called NoSQL databases, which are in widespread
use, and NewSQL databases, which are more of a specialty cate-
gory that adds limited distribution capabilities to existing legacy
architectures.

This chapter describes all these database categories in some
detail. I show why they fall short in meeting all the needs of mod-
ern applications and how those gaps inspired a new approach
to databases, which became the groundwork for distributed
SQL. This modern approach combines the benefits of both tra-
ditional relational database management systems (RDBMSs) and
NoSQL databases.

Describing the Problems
with Traditional Databases

Traditional databases fall into three categories, each of which has
advantages and disadvantages. However, none of them meets the
needs of today’s organizations for a scalable cloud-native data

https://www.yugabyte.com/tech/distributed-acid-transactions

CHAPTER 2 Where Legacy Transactional Databases Fall Short 13

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

layer that matches up well with today’s scalable cloud-native
application software. (Cloud-native software is defined by sev-
eral key characteristics, but horizontal scalability may be the most
important.)

Certain database updates are called transactions, and they involve
adding or changing a record in a reliable manner so that all appli-
cations that access the database can count on the retrieved data as
being 100 percent accurate and current. The most reliable trans-
actions are atomic, consistent, isolated, and durable (referred to
as the ACID properties).

Traditional Structured Query Language (SQL) databases, described
next, support ACID transactions; other kinds may or may not.

Here are the three traditional types of databases:

 » Traditional SQL: Traditional SQL databases are, by
definition, relational. They fully support SQL and ACID
transactions. Traditional SQL databases only scale vertically
(a single powerful server), not horizontally (scaling by adding
more servers). To scale a traditional SQL database beyond
the limits of a single server, enterprise engineering teams
must deploy a cache in front of the database or manually
shard the database. (Sharding is breaking up a database
table into smaller fragments stored in different databases
and then logically stitched together.) Both these options
are expensive and fragile. Traditional SQL databases aren’t
inherently resilient either. To achieve high availability, you
need to deploy a bolt-on replication solution.

 » Traditional NoSQL: NoSQL databases gained horizontal
scalability and the ability to support multiple data models
by abandoning relational structure, SQL, and ACID transac-
tions. They’re inherently resilient to failures in the underlying
infrastructure. They’re useful for a subset of database-
related problems, but they’re weak for transactions, which
tend to be inconsistent, and for queries, due to the lack of
support for the speed and power that accompanies support
for SQL.

 » NewSQL: NewSQL is an initial effort toward supporting
horizontal scalability in a database that uses a relational
data model and benefits from support for the speed and
power of SQL. However, NewSQL does not support multiple

14 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

models, only relational; has low availability, even though it’s
horizontally scalable; and, like the other traditional data-
bases, is not fully cloud native. Behind the scenes, NewSQL
solutions are still based on the legacy relational database
architecture.

Battling Forced Trade-offs
and Fragmentation

The evolution of databases to include traditional SQL, traditional
NoSQL, and NewSQL caused a lot of organizational pain. Each
approach had some advantages for a certain subset of applica-
tions. But the result is that many organizations now support a
plethora of databases, none of which are truly optimal.

For example, NoSQL databases share some attractive characteris-
tics: horizontal scalability, high-speed write performance, flexi-
ble schemas, and high availability. This causes organizations to
adopt different NoSQL databases that share these characteristics,
each with its strengths for different use cases.

And of course, organizations must retain and expand their base of
traditional SQL databases because they need reliable ACID trans-
actions and fast queries that go with SQL support.

However, this means that organizations need to support a com-
plex mix of SQL and NoSQL databases. Every new database an
organization adopts has a learning curve; the need for organi-
zational expertise in that database; organizational relationships
with companies and standards bodies involved in that specific
database; and hiring and retention of expert personnel, among
other considerations.

When a problem arises with a complex application, and one or
more databases are involved, finding which database type is
involved and the developers and operations people who can fix
the problem, can be a major headache. Agility is hindered for the
development and delivery of applications.

When choosing which database to use, consider how you’ll find
and solve problems when they arise, including whether your staff
have the required experience.

CHAPTER 2 Where Legacy Transactional Databases Fall Short 15

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Identifying Why NoSQL and NewSQL
Don’t Solve the Problem

Both NoSQL and NewSQL have strong proponents who will claim
that every problem associated with a specific database in their
category, or with that category as a whole, can be solved. So, it’s
important to understand why this is not the case.

Challenges with NoSQL
NoSQL has been around longer than NewSQL and has a much
wider and richer array of database options, each with its own
fans. At the same time, there has been consolidation in this mar-
ket, with some database types and the companies associated with
them, falling by the wayside.

The core problem with NoSQL databases goes back to their ori-
gin in 2006. They were originally optimized for the scalability
of writing data while sacrificing (a) up-to-the-moment consis-
tency, (b) complex access patterns to support ACID transactions
and the full range of SQL queries, or (c) both.

The most valuable data was committed to SQL databases; less
valuable data that came in fast and in large volumes went to
NoSQL databases.

Applications based on NoSQL databases could still be valuable;
for instance, Google Search is undoubtedly a valuable application,
and NoSQL was originally developed partly to power it.

But the most recent value of any specific data item used for Google
Search is not indispensable, and there isn’t a need for transactions
or reliable updates. Because search is a well-established problem,
a small number of search types can be optimized without the need
for the power and flexibility of SQL queries.

However, there are only so many applications where individual
data updates are not highly valued and that don’t need to support
a broad range of fast, reliable queries. There are ongoing efforts to
add ACID transactions to NoSQL databases and approximate SQL
on the query side. The value of relational databases is increasingly
appreciated by all concerned. Even Google Search is increasingly
relying on relational databases.

16 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Challenges with NewSQL
NewSQL databases were an effort to meet the need for scalability
of relational databases (that is, those that support SQL queries).
There are two types of NewSQL databases:

 » Sharded: A SQL database can support limited scalability
by adding a sharding layer to manage independent servers,
each holding a portion of a larger database. The sharding
layer handles some challenges well but is less agile than a
truly distributed database.

 » Distributed engine: A SQL database can be created that has
a fully distributed storage engine. These databases are closer
to the goal of a scalable relational database. But they don’t
support the additional data models introduced by NewSQL,
and availability is low because these databases don’t achieve
the global elasticity required by modern cloud infrastructure.

Each NewSQL database is weak in one or more areas that are
desirable, or even required, by specific applications:

 » Transactional capability: Each NewSQL database chooses
from MySQL compatibility, PostgreSQL compatibility, or a
proprietary approach. Each is limited on one or more
capabilities, such as distributed transactions, JOINs across
shards, and so on.

 » Geographic data distribution: NewSQL databases are
mostly limited in their support for data distribution across
multiple geographies.

 » High performance: NewSQL databases tend to be limited
in performance and don’t scale well horizontally, with
performance gain per server dropping as more servers
are added.

 » Kubernetes-native: NewSQL databases were mainly
created before the rise of Kubernetes in the late 2010s
and tend not to work natively with Kubernetes.

The world has evolved beyond the capabilities of NewSQL data-
bases. They were an effort to supercharge the existing relational
database architecture with some horizontal scalability, but they’re
not as scalable as the application software running in today’s (or
tomorrow’s) cloud and they don’t offer the flexibility provided by
NoSQL.

CHAPTER 3 Distributed SQL: Rethinking Transactional Databases 17

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

IN THIS CHAPTER

 » Understanding the appeal of
distributed SQL

 » Looking under the architecture hood

 » Comparing distributed SQL to other
databases

Distributed SQL:
Rethinking Transactional
Databases

Modern cloud-native applications and data processing
demands have exposed the limitations of traditional SQL,
NoSQL, and NewSQL databases. But what’s the answer?

A nonrelational database doesn’t use the table format, with
defined rows and columns, used by relational database sys-
tems. A NoSQL database is literally a database that does not use
Structured Query Language (SQL) for queries, but several for-
merly NoSQL databases have added SQL-like query languages.
The term NoSQL database is often used to mean the same thing
as nonrelational database.

As we’ve seen, no single solution meets every set of today’s
diverse requirements.

Business-critical applications need a flexible, scalable relational
database that offers the best features of its predecessors but
eliminates their shortcomings, a database that meets the require-
ments of cloud-native application code running at scale.

18 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

A new category of databases has arrived, and it’s called distrib-
uted SQL. A distributed SQL database matches the characteristics
of a traditional SQL database but brings essential flexible capa-
bilities previously found only in the cloud-native world.

Understanding the Appeal
of Distributed SQL

Distributed SQL essentially combines the best of two worlds: the
transactional capability and SQL support of relational databases
with the scalability and resiliency offered by NoSQL and NewSQL.

Distributed SQL database management systems present a single
logical database for both traditional and containerized applica-
tions. Behind the scenes, they’re powered by a distributed, multi-
cloud data storage layer that can span across public, private, and
hybrid clouds. This storage layer automatically replicates the data
for resilience. All query processing is distributed across multiple
servers for scale.

This new architectural approach offers advantages that aren’t
available elsewhere:

 » Best of multiple worlds: Developers get attributes usually
found with traditional SQL — low latency; relational data
modeling and capabilities; atomic, consistent, isolated, and
durable (ACID) transactions; high performance; familiar
interfaces; support for existing infrastructure. They also
get those associated with NoSQL — geographic distribution,
ease of deployment in a cloud-native environment, high
availability, scalability, and simplified management.

 » Simplicity of operations: Because the data layer offers
built-in scalability and resilience, database operations teams
do not need to engineer solutions with caches and third-
party replication solutions. A multi-cloud data layer based on
distributed SQL is easy to deploy and quick to adopt due to
relative simplicity at the point of interaction and the familiar-
ity of its interfaces and capabilities. By working with apps
across all cloud-native environments, organizations can start
anywhere and scale everywhere, while maintaining or even
improving performance, uptime, and data integrity.

CHAPTER 3 Distributed SQL: Rethinking Transactional Databases 19

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Architectural resiliency: Resiliency is offered at the data
layer level, independently of how it’s supported within
specific applications. Because resiliency is built into the
database rather than just implemented in the application
layer, it allows capabilities to be updated and improved over
time without affecting how application developers interact
with the data layer. This offers a distinct advantage com-
pared to more traditional databases, which focus solely
on the application layer.

Distributed SQL is useful for a wide range of workloads. Some
specific characteristics to look for when creating a new applica-
tion, moving an existing application to the cloud, or upgrading an
application that is failing to meet requirements, include:

 » Transactional consistency: Data updates that must be
reflected identically no matter how, where, or when the data
service is accessed benefit from a distributed SQL approach.
The data layer delivers ACID compliance against a set of
database assets spanning many servers that are carefully
managed behind the scenes.

 » Low latency: What are the service level agreement (SLA)
parameters that an application operates under? A time-
critical application programming interface (API) call may
need to run as quickly as required by the most demanding
application. Low-latency applications benefit from speed
and support for distributed — that is, appropriately local —
data found in distributed SQL, where data can be moved
around in the cloud or even placed on the edge close to
users as needed.

 » Ingest and query speed: These may seem to be two
different things, with high write speeds seen as a core
NoSQL benefit and fast and reliable queries belonging to
the traditional SQL camp, but they often go together.
Distributed SQL delivers rapid ingest by leveraging its
distributed nature and fast and reliable inquiries via its
support for the relational model and SQL.

 » Data access volume: When vast amounts of data need to
be accessed to reply to a query, any database approach will
be hard-pressed to meet requirements. For instance, credit
card approvals will examine as much data as possible for as
long as the application can afford to give them. Distributed

20 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

SQL is a reliable and flexible model to meet such challenging
queries.

 » Data complexity: Distributed SQL allows data to be
structured and accessed, ensuring that complex data can
be processed at high speeds. Relational data modeling has
stood the test of time, remaining the most popular approach
to manage data for business applications.

Looking Under the Distributed
Architecture Hood

An advantage of a distributed SQL data layer is that most users
shouldn’t need to concern themselves with the implementation
details of the underlying database architecture. However, under-
standing the detailed system setup can be useful when needed to
support critical applications. For example, it may be possible to
optimize data placement to help meet critical performance met-
rics such as latency and throughput.

So, how does a distributed architecture actually work?

The database management system presents a single logical SQL
database to the user. The data layer is deployed on multiple data
nodes (or servers) that, in current implementations, store parts
of a database, called shards, on automatically created keys. Each
key may consist of one or more data column names in the data-
base schema.

This new data stack is distributed SQL. It has a two-layer archi-
tecture, as shown in Figure 3-1. Logically, it functions as a single
relational database. But functionally, it’s deployed on a cluster of
servers, ensuring resilience, scalability, and more.

Each data node has two parts:

 » API/query layer: This is the coordinating layer of the data
node. All distributed SQL databases support a SQL API for
applications to access when modeling relational data and to
perform queries across these relations. The overall data
layer automatically distributes data updates, API calls, and
queries to the appropriate nodes for processing. Some

CHAPTER 3 Distributed SQL: Rethinking Transactional Databases 21

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

distributed SQL databases offer additional APIs at the query
layer, like a Cassandra-compatible API, to look like a NoSQL
environment.

 » Distributed data storage layer: Indexes and data are
automatically sharded by the data layer to multiple nodes,
with data copied in a way that provides resiliency against
failure. By distributing data, no single node becomes a
bottleneck to performance or a single point of failure.
Writes are synchronously committed across multiple
nodes to support resiliency during the failure of a single
node, and ACID transactions are distributed for single or
multiple-row updates. Many solutions have built-in intelli-
gence to seamlessly rebalance data as nodes come online
or go offline.

FIGURE 3-1: Distributed SQL has a two-layer architecture as part of a single
logical SQL database.

22 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Comparing Distributed SQL to Other
Database Types

The capabilities and architecture of distributed SQL make it the
ideal choice for cloud-native application development. If you’re
using microservices, containers, or Kubernetes to develop and
deliver applications in a cloud-native environment, distributed
SQL may be the best starting point for the data services required
by your applications.

The advantages of standardization
There are often database requirements that need a specific data-
base or legacy applications that don’t need any additional fea-
tures or capabilities. For example, you may decide not to migrate
away from traditional SQL databases for legacy applications. Most
companies will find themselves, often not because of a specific
strategy, having to support many different databases.

However, even in a multi-database scenario, identifying a single
database type as your organization’s default first choice has sig-
nificant advantages, which only increase as the company grows:

 » Hiring and retention: Developers and operations personnel
will be able to use, learn, and stay up to date on fewer
database types, with distributed SQL acting as the core.

 » Faster application development: Repeated use of a single
database type will give developers “muscle memory” for that
database.

 » Reduced operational issues: Distributed SQL is ideally
suited for cloud-native environments, most application
types, and use cases. So, you’re less likely to incur opera-
tional issues.

 » Faster resolution of operational issues: As with applica-
tion developers, operations people will develop pattern
recognition for solving problems that arise.

 » Higher application performance: Distributed SQL is highly
performant across various scenarios, so making distributed
SQL the first choice is likely to improve application perfor-
mance across the board.

CHAPTER 3 Distributed SQL: Rethinking Transactional Databases 23

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Increased agility: Your organization’s ability to respond to
challenges and take advantage of opportunities will improve
due to the benefits of standardization and the advantages of
distributed SQL.

Selecting a widely used and familiar type of database can have
significant benefits when hiring and retaining IT staff. Consider
this alongside technical issues when determining your overall
strategy.

Overcoming the challenges
of traditional SQL
The advantages of using distributed SQL over traditional SQL in a
cloud-native application development and delivery environment
are clear. Distributed SQL has all the capabilities of traditional
SQL and more. And it’s a far better fit for an agile, dynamic cloud
environment.

Sticking with traditional SQL means continuing to suffer three
significant disadvantages:

 » Manual sharding: When a traditional SQL database grows
large, you’re forced to shard it manually. This leads to
difficult design choices, such as choosing or creating a shard
key, and enduring operational difficulties as the sharded
database sections grow and shrink at different rates.

 » Bolt-on replication: Growing databases are usually
important enough to require high availability, but traditional
SQL databases don’t include this feature. You’ll need to
source and deploy a bolt-on replication solution, requiring
design work and adding operational complexity.

 » Lack of geo-distribution: A traditional SQL database exists
in one geographic location, which may be far from your
customers. It may not meet performance needs or regula-
tory requirements.

24 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Challenges with NoSQL
NoSQL presents three distinct challenges compared to distributed
SQL:

 » Operational complexity: NoSQL databases represent the
first generation of cloud-native databases. They emerged
early in the cloud evolution and are not architected to
optimally use the cloud as it is today. This makes develop-
ment and operations harder. Performance is inconsistent
and often only improved by committing extensive resources
to data standardization or query optimization. Finally, the
proliferation of NoSQL (and nonrelational) database types
introduces complexities of its own.

 » Frustrating application development: Getting data into
a NoSQL database is easy, but everything after that can be
harder than it is with a SQL database. NoSQL requires more
specific planning up front, which can make new queries a
tangle of complexity, inconsistency, and difficulty. NoSQL can
also bog down application development and operations.

 » Inconsistent customer experiences: A database used
only for specific use cases makes it hard for your team to
deliver its best work. This issue is exacerbated by the fact
that NoSQL databases are eventually — not necessarily
currently — consistent. Every level of your organization
can expect some frustration when using a NoSQL data-
base for all but the most straightforward use cases.

Data and database types are very sticky, and you’re likely to
have a complex data operating environment for a long time yet.
Standardizing on distributed SQL, where possible, can reduce
many of the disadvantages that arise when using NoSQL.

CHAPTER 4 Distributed SQL in Action: Exploring Top Use Cases 25

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

IN THIS CHAPTER

 » Realizing database modernization
rewards

 » Unlocking cloud-native applications

 » Powering edge and streaming solutions

 » Solving problems for major industries

Distributed SQL
in Action: Exploring
Top Use Cases

Every company has unique infrastructure and application
needs, but many face similar challenges in their evolution to
a data-centric company. These shared issues boil down to a

few common themes.

The first area to cover is common problems faced by many, or
even most, organizations today. Distributed SQL is particularly
well suited for database modernization initiatives and for use
with cloud-native “born in the cloud” applications and edge and
streaming applications.

The second area to examine is industry-specific use cases. Many
industries find that distributed SQL simplifies the data-centric
issues they face. These industries include financial services, retail,
telecommunications, manufacturing and automotive, software as
a service (SaaS), and Internet applications.

26 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

This chapter outlines these potential solutions and industry use
cases, so you can identify similar issues in your own organization
that distributed SQL may help you fix.

Realizing the Rewards
of Database Modernization

Increasingly, organizations are prioritizing database infrastructure
modernization because their existing database solutions result in:

 » Wasted time: When an existing database is unsuited to
application needs, or not powerful enough to meet them,
developers spend extra time in the application trying to
work around database gaps, instead of developing cool
and differentiating features.

 » Increased risk: Organizations add capability in the form
of bolt-on tools for data transformation, caching layers for
improved performance, and so on. The result is a more
complex architecture with additional items to maintain
and added points of failure.

 » Unexpected costs: The high cost of most legacy solutions
and the additional expense of bolt-on tools combine to make
the data estate expensive and inadequate for the organiza-
tion’s changing needs. Figure 4-1 contrasts the rapidly rising
costs of scaling up, as required by legacy solutions, with the
steady and predictable cost increases of scaling out, as
enabled by distributed SQL.

Moving to a modern data layer built on distributed SQL allows
organizations to free their developers from developing complex
applications due to limitations in the underlying database.

By automating key data operations, like automatic sharding,
intelligent load balancing, and simplified multi-region deploy-
ments, developers can innovate faster and focus on delivering
value-added services.

CHAPTER 4 Distributed SQL in Action: Exploring Top Use Cases 27

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

A huge benefit of embracing a modern database is around risk
reduction. Relational database modeling and the full suite of rela-
tional database management system (RDBMS) capabilities allow
organizations to capitalize on the resilience, scale, and geo-
distribution required to achieve the results they need while main-
taining a secure, always-on business.

A modern database will increase operational efficiency, reducing
costs. The hassle factor of sticking with a traditional database —
which requires you to manage sharded copies of your data, add
a bolt-on solution for replication, and grapple with the lack of
geo-distribution — keeps your best people busy with operational
issues and increases your costs.

As you examine the needs of your organization and the current
state of your database or databases (because you’re likely to be
juggling a number of different solutions), consider the impact
that a modern database could have on your business, developers,
and customers today and in the years to come.

By shifting to a distributed SQL solution, trade-offs are elimi-
nated, so you can deliver critical business outcomes by accelerat-
ing productivity, reducing costs, and lowering risk.

Distributed SQL provides a modern future-proof data layer that
allows you to scale confidently and enhance developer produc-
tivity. This enables you to maximize your investment in people
and processes by using familiar tools and reducing complexity.
Distributed SQL databases address your organization’s needs
today while preparing you for what the future holds.

FIGURE 4-1: Scaling out avoids the rapid increases in cost associated with
scaling up.

28 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Unlocking Cloud-Native
Application Capabilities

Cloud-native applications are built on modern software devel-
opment and design approaches such as microservices, con-
tinuous integration/continuous delivery (CI/CD), containers, and
Kubernetes (for container orchestration).

These modern “born in the cloud” applications demand a cloud-
native, distributed database that complements the rest of the
tech stack.

Using monolithic legacy database architectures with cloud-native
applications causes problems — the very problems that cloud-
native application development and delivery were created to avoid:

 » Forced trade-offs: Developers must choose between an
RDBMS that has native support for schema and SQL but
doesn’t scale, and a nonrelational database that scales
but doesn’t fit organizational needs for structure and
consistency.

 » Complex code: With legacy databases, developers must
“add on” database scaling and resilience manually. This is
expensive and results in fragile solutions, as well as the
need for re-architecting each time an application needs
to scale further.

 » Operational headaches: Complex, inconsistent solutions
make automation harder. They present proprietary applica-
tion programming interfaces (APIs) that have to be mastered
and maintained, and cause fresh problems each time scaling
thresholds are exceeded.

With a cloud-native, distributed SQL database, app development
proceeds on a familiar, flexible, modern stack. The data layer
matches the distributed, clustered architecture of Kubernetes
along with the productivity, agility, performance, and simplicity
of cloud-native application code.

Developers work faster, customers (internal and external) are
happier, and operations are smoother. Your organization benefits
from faster time to value, easier scaling, and access to a vibrant
community that supports the open-source solutions powering
distributed SQL.

CHAPTER 4 Distributed SQL in Action: Exploring Top Use Cases 29

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Kubernetes is open-source orchestration software for containers —
a key technology for cloud-native solutions. The term cloud native
can also be applied to software running on-premises, as long as
it’s managed using cloud-friendly software like Kubernetes.

Powering Demanding Edge
and Streaming Solutions

Streaming devices such as mobile phones are now spread all over
the world, in great numbers. These devices generate and con-
sume reams of data that greatly benefit from data that can be
processed close to them. (Think of someone using a mapping or
ride-sharing app — as they travel, they need up-to-date infor-
mation at their current location.) It becomes ever more important
to process data as close as possible to the data producers and/or
consumers, and move data efficiently when needed.

Distributed SQL provides a consistent database architecture
for streaming data and at the edge, where the people who need
application access live and work. Figure 4-2 shows how the edge
relates to the cloud.

Distributed SQL allows you to avoid a host of problems found with
legacy solutions, including

 » Slow response times: You may re-architect your entire
application to deliver responsive solutions at a global scale,
but a legacy database solution will frustrate all your hard
work. You’ll have to move data to where the processing is,
even if that’s on the other side of the globe, and suffer slow
ingest speeds, inconsistent processing capabilities, and
many other disadvantages that a mixed architecture based
on legacy technologies brings.

 » Data silos: Having some databases at the edge and others
in the cloud makes it inevitable that you’ll have data silos and
high data costs. You’ll also need to make databases do things
they weren’t designed for as you try to avoid large, expen-
sive, slow data transfers between systems.

 » Complex management: Data replication, the need to scale,
and outages plague complex systems that are inconsistent

30 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

at the edge and in the center. The same complexity can
cause problems and make them tricky to solve.

A cloud-native database powered by distributed SQL is purpose-
built for edge and streaming applications. Unlike legacy solutions,
the core distributed SQL architecture is built to automatically
distribute data across nodes and regions to seamlessly address
many common issues with streaming and edge applications. In
addition, the cloud and platform-agnostic nature of these data-
bases simplifies the deployment in different locations, allowing
them to match whatever infrastructure or cloud is preferred in
different regions.

You can create powerful and architecturally simple solutions to
challenges that previously seemed insurmountable.

Distributed SQL enables you to deploy anywhere on a consistent
underlying infrastructure, steadily improve and future-proof that
infrastructure over time, and deliver reliably high performance.

FIGURE 4-2: The edge in edge computing is divided into several tiers.

CHAPTER 4 Distributed SQL in Action: Exploring Top Use Cases 31

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

It provides low-latency data streaming and computing at the
edge, support for large data sets with high throughput, sup-
port for multiple current connections, and horizontal scalability
without added latency. Leading distributed SQL databases offer
built-in replication between databases at the edge and in the data
center or cloud.

Solving Problems across Industries
The solutions above are needed by nearly every organization of
any size, but different industries have additional demands unique
to them that require a mix of solutions. As I mention earlier, there
are also some commonalities among the following organizations.

Financial services
Financial services organizations combine the need to support a
wide range of legacy systems with the need to compete aggres-
sively in a fast-changing world. Distributed SQL allows these
organizations to be more productive and to create future-proof
systems.

Regulatory requirements are especially stringent for financial
services organizations. They only get tighter and more complex
as regulators raise the stakes, seeking to avoid incidents like the
financial crisis of 2008. Scalability requirements are uniquely
pressing for financial services organizations that operate at a
regional or global scale.

Financial services also face unique challenges:

 » Running financial ledgers on a distributed basis and at scale

 » Unifying customer data across services while meeting data
protection regulations across markets

 » Accelerating the processing and data transfers that power
financial services

Only distributed SQL allows financial service organizations to
meet these obligations and take advantage of new opportunities,
with the speed required by today’s fast-paced world.

32 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Retail and e-commerce
Retail and e-commerce organizations share many of the same
requirements as financial services organizations, along with their
own unique concerns. These include a strong need to differenti-
ate from competitors and deliver modern, omnichannel services.
Distributed SQL lends tremendous agility to these organizations,
allowing them to innovate seamlessly at scale.

The need for differentiated experiences is particularly strong in
retail and ecommerce. Entire retail locations, whether physical
stores or online shopping portals, need to distinguish themselves
from competitors. Experiences delivered online may need to be
backed up by retail locations and vice versa, with a consistent
customer experience throughout.

Imagine a brick-and-mortar location with a curated and locally
aware selection of products, backed by a global catalog includ-
ing hundreds or thousands of additional products, responsive to
the customer’s every need. Distributed SQL allows retail and e-
commerce organizations to innovate nimbly across a range of
touch-points and delivery platforms.

Telecommunications
Telecommunication requirements are extremely demanding, with
interactive audio and video, and large data transfers competing
for bandwidth. The move to 5G is exponentially increasing data
volumes and the need for real-time data processing that delivers
immediate value from the flood of data. Distributed SQL provides
the fast, flexible, and scalable platform for delivering on these
escalating requirements.

The need to continually modernize applications is especially
strong in telecommunications, as rapid infrastructure improve-
ments keep raising user expectations. Developers and architects
need horizontal scalability to stay ahead of spikes in demand
and maintain compatibility with existing infrastructure to make
delivering solutions fast, easy, and reliable.

Like financial services, telecommunications providers need to
meet stringent regulatory requirements. These often include
local storage of data generated in a specific regulatory footprint,

CHAPTER 4 Distributed SQL in Action: Exploring Top Use Cases 33

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

even as users move rapidly across geographical and regulatory
boundaries. Only a simplified data layer that scales across multiple
clouds and hybrid cloud can support these complex requirements.

Manufacturing and automotive
The industrial requirements of the manufacturing, automo-
tive, and energy sectors are demanding. They include special-
ized equipment that must run safely, meet detailed regulatory
requirements, and provide a consistent stream of data to opera-
tors to ensure continuous, safe, and efficient operation.

Many industrial companies require global scalability, high
availability, and a high degree of data integrity, similar to other
sectors, but with even higher stakes, given the safety concerns
involved. In addition, industrial systems must operate with a
minimum of operational overhead and complexity, so operators
can focus on the most important aspects of the systems they’re
running.

A distributed SQL database can scale as needed, operate across
multiple cloud availability zones to meet geographic extensibility
requirements, and run on any cloud or on-premises platform to
provide flexibility and cost-effective operations. Industrial com-
panies can use distributed SQL to innovate in a way that has never
been available before.

SaaS and Internet
SaaS and Internet companies provide the digital infrastructure
used by businesses and consumers to run their lives and orga-
nizations efficiently and cost-effectively. All the sectors I men-
tion earlier depend on SaaS and Internet companies for new and
improved solutions to meet customer needs, competitive pres-
sures, and regulatory requirements.

A distributed SQL data layer provides these companies with the
best of both worlds: the stability and reliability of SQL solutions
that have been around for decades, and the flexibility and scal-
ability they expect in the digital era. Distributed SQL provides
these capabilities to SaaS and Internet companies, and allows
them to pass them on to their own customers.

34 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

SaaS and Internet companies are especially aligned with the most
flexible method for delivering a distributed SQL data layer: a fully
managed solution. Often managed service providers themselves,
these companies appreciate the time to market and flexibility
benefits that a fully managed offering gives them.

CHAPTER 5 Measuring the Business Impact of Database Modernization 35

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

IN THIS CHAPTER

 » Driving innovation more productively

 » Experiencing the resiliency of
distributed SQL

 » Seeing the benefits of efficiency

 » Finding savings through scalability

 » Realizing benefits from enhanced
security

Measuring the Business
Impact of Database
Modernization

Being effective in business means making the right choices,
and there are many opportunities to make a difference with
IT initiatives. So, what makes using a distributed SQL data-

base particularly valuable?

Part of the answer is technical simplicity, even a kind of beauty.
Distributed SQL takes a familiar construct, the relational data-
base, and supercharges it by bringing it into the cloud era.

The cloud is all about easy and predictable availability of resources.
Distributed SQL uses that strength to rearchitect the relational
database for the cloud-native era.

But technical simplicity and harnessing the power of the cloud
are only part of the story. Distributed SQL also has direct and
immediate business benefits. These include helping organiza-
tions increase productivity, resiliency, efficiency, security, and
savings — PRESS for short.

36 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In this chapter, I show you how distributed SQL, as delivered by
Yugabyte with YugabyteDB, delivers these important benefits to
your organization.

Accelerating Innovation
with Greater Productivity

Improved automation and unlimited scaling are two key benefits
of distributed SQL. They free up developers to focus on building
value-add features.

The modern data layer automates data scaling and distribution.
Distributed SQL can support new ideas in production in hours or
days rather than weeks or months, increasing the rate of innova-
tion, responsiveness, and competitiveness.

Key business metrics that you can realize with distributed SQL
include

 » Time to first value (TTFV) is reduced by the availability of
familiar interfaces and ways of working.

 » Application scaling time is reduced as database instances
can be provisioned in hours (not days or weeks), speeding
responsiveness.

 » Time taken to scale up or out the database is reduced, as
clusters can easily be expanded with new or bigger nodes,
without requiring downtime.

 » Performance improvements over existing database plat-
forms can be realized, delivering tremendous value to the
business — especially those with fast-growing apps and/or
a widely distributed customer base.

YugabyteDB Managed, the fully managed database as a service
(DBaaS) offering of YugabyteDB, eliminates the need for server
purchasing, setup, provisioning, and so on. Developers become
more agile and productive with instant access to the needed
resources.

CHAPTER 5 Measuring the Business Impact of Database Modernization 37

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Support for industry-standard application programming interfaces
(APIs) reduces TTFV. Yugabyte Structured Query Language (YSQL)
is PostgreSQL-compatible, and Yugabyte Cloud Query Language
(YCQL) is Cassandra-compatible. This makes YugabyteDB a drop-
in replacement for less-flexible databases, while leveraging exist-
ing tooling and skill sets.

Because distributed SQL is a true relational database, it’s easier
to migrate existing apps to YugabyteDB and start realizing busi-
ness value immediately. The availability of YSQL and YCQL further
speeds migration.

Prioritizing Resiliency as a Key
Database Requirement

Resiliency is one of the most important benefits of the cloud. It’s
important to maintain multiple copies of data, for instance, and
to have the ability to seamlessly and non-disruptively support an
application from a different, fully functioning server if one server
goes down.

But traditional SQL fails to take full advantage of that efficiency.
Because a single server controls each database, there’s opera-
tional delay and higher operation costs when a server crashes.

Distributed SQL inherently avoids this problem. With distributed
servers, true operational redundancy is automatically achieved for
data storage just as it is for computation. The advanced features
of a distributed SQL database ensure that distributed data across
servers remains strongly consistent.

Yugabyte sets standards for data retention and performance
when the cloud provider whose service YugabyteDB is running on
suffers a zone outage. The recovery point objective (RPO), which
measures any data loss, is set to 0, meaning no data loss will
occur. The recovery time objective (RTO) to recover and resume
operations from the new zone is 3 seconds.

Business metrics that are improved, often dramatically, by the
resilient nature of distributed SQL include

 » Failure impact and mean time to recovery (MTTR) are
measured in seconds or minutes, not hours.

38 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Fewer database-related incidents that interfere with
production.

 » Failover time can be instant, happening as soon as a load
balancer is switched to point to a new database server —
no data movement or data reconciliation is required.

 » Downtime for users when a cloud zone or data center goes
down can be as little as zero because data can be synchro-
nously replicated across zones and data centers in a true
active/active configuration.

 » Data backups can be taken numerous times per day without
impacting performance, allowing recovery from even the
most serious crashes in minutes.

With distributed SQL, the database gains the same advantage that
the cloud famously lends to compute: There is no single point of
failure. The approach and learnings that operations use to make
compute capabilities robust also now apply to data.

Uncovering the Hidden Effect
of Efficiency

With distributed SQL, operations become much more efficient.
DBAs, developers, and infrastructure teams need to do much less
work to carry out routine tasks and respond to problems, even
potentially serious ones, that would historically have led to days
of data recovery activities.

This means important business metrics move in the right
direction:

 » A database can be reconfigured or moved to a more current
version, with zero downtime.

 » Database deployments can be scaled out in a few days after
a business decision is made, and in minutes or a few hours
after the infrastructure is ready.

 » Database performance bottlenecks, which may have
previously taken hours or days to resolve (or not been
solvable), can now be removed instantly.

CHAPTER 5 Measuring the Business Impact of Database Modernization 39

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Application and data migration time is often a limiting factor
for many cloud initiatives and can be reduced drastically
thanks to intelligent migration and analysis tools.

YugabyteDB is easily managed in any event, but when consumed
as a service from the cloud, many management tasks are removed
from operations’ list of things to do. Even for on-premises envi-
ronments, where closer data control is still required, solutions
like YugabyteDB Anywhere greatly simplify the deployment and
management of a self-managed DBaaS solution in your preferred
data center or cloud.

And success is no longer a problem. With traditional SQL,
increased traffic, usually a good thing for the business, can break
infrastructure. With distributed SQL, which scales up and out,
performance stays the same even when traffic increases.

Sensing the Safety in Security
IT security often takes the form of a race between hackers and
operators. Upgrades and patches that take time to implement
result in vulnerabilities that be exploited, often at significant cost.

The flexibility of distributed SQL means that upgrades and patches
can be deployed very quickly and without downtime. This means
that metrics around security are significantly improved:

 » Patches to fix common vulnerabilities and exposure (CVE)
take no time to deploy.

 » Credentials are rotated every few months, not every year
(or more).

 » Operating system software version upgrades can be carried
out without downtime.

 » Database software upgrades are carried out monthly and
without downtime.

 » YugabyteDB Anywhere allows operators to exercise modern
policy controls and limit access privileges per user and
group, making it far easier to comply with recent standards
such as the General Data Protection Regulation (GDPR).

40 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Seeing the Sense in Savings
One of the advantages of the cloud is that you can pay for and pro-
vision only the resources you need, when you need them. Starting
new projects is fast and cheap. And when an application is up
and running, the ability to scale up also means the ability to scale
down, reducing waste.

A modern database architecture delivers a simplified architec-
ture that delivers advanced features managed by simplified tools,
built-in automation, and native intelligence. These features have
a strong, and in some cases transformative, effect on key business
metrics:

 » The ratio of operations personnel to developers is very low,
sometimes on the order of 1 operator to 100 developers.

 » Infrastructure costs are far less due to the flexible use of
commodity hardware versus the inflexible use of high-
performance servers or specialized hardware usually
required for databases like Oracle and IBM DB2. In addi-
tion, data density can greatly reduce hardware footprint,
especially versus common NoSQL solutions.

 » Even though distributed SQL is far more capable, software
licensing costs for YugabyteDB are far less than for legacy
databases.

 » With distributed SQL, revenue loss due to downtime can be
eliminated; the top line (revenue) is preserved, so the
bottom line (profit) stays high.

 » Consolidation of existing SQL and NoSQL workloads into a
distributed SQL implementation saves money with reduced
database sprawl and lower operational hassles.

Legacy databases often require extra fees for enterprise-grade
features like monitoring and data replication. YugabyteDB is 100
percent open source, so these capabilities are included for free.
Beyond the license costs, it’s also important to analyze the over-
all value returned to the business from greater productivity and
reduced risk.

CHAPTER 5 Measuring the Business Impact of Database Modernization 41

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In addition, concrete savings on hardware due to greater efficien-
cies and data densities, plus lower operational costs thanks to
built-in automation and intuitive user interfaces can have a huge
impact on reducing your total cost of ownership (TCO).

Distributed SQL is run on a cluster of inexpensive commodity
hardware, like compute. This takes full advantage of the promise
of the cloud and eliminates the need to scale up into expensive
custom servers or cloud instances.

CHAPTER 6 Ten Reasons to Pick Distributed SQL 43

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6
Ten Reasons to Pick
Distributed SQL

In many ways, distributed SQL is a simple upgrade to traditional
relational databases. Yet it profoundly affects your application
development and finally aligns the data layer with the apps and

infrastructure modernization you’ve invested in over the past
decade.

In this chapter, I summarize the key advantages of distributed
SQL, so you can quickly review them and see which features may
be most important to your environment.

The first four advantages — strong consistency, continuous
availability and resiliency, horizontal scalability, and geo-
distribution — are inherent to well-engineered distributed SQL
solutions, including YugabyteDB.

The remaining six advantages — dynamic workload optimiza-
tion, hybrid cloud and multi-cloud deployment, the use of an
open-source licensing approach, security and compliance, ease of
migration, and ease of operations — are additional capabilities
found in some distributed SQL offerings, including YugabyteDB,
but not in all.

44 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Strong Consistency
Cloud databases tend to force a trade-off between the scalability
of cloud compute capabilities and the consistency of traditional
SQL databases. Distributed SQL offers both scalability and fully
ACID-compliant transactions.

ACID stands for atomicity, consistency, isolation, and durability.

Continuous Availability and Resiliency
Traditional SQL databases are fragile because they depend on a
single server or complex replication solutions. A distributed SQL
solution is natively resilient and can easily meet requirements for
continuous availability.

Horizontal Scalability
Cloud compute is horizontally scalable; you can quickly access the
number of compute servers needed to get your work done — no
more, no less. With distributed SQL, your database gains those
same advantages, while maintaining the strong consistency pre-
viously only found with traditional SQL.

Geo-Distribution
Traditional SQL databases lack the scalability needed to take
advantage of the geographic distribution that is usually an inher-
ent feature of the cloud. Distributed SQL makes geo-distribution
instantly available.

CHAPTER 6 Ten Reasons to Pick Distributed SQL 45

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Dynamic Workload Optimization
A key feature of the cloud is the ability to put each workload on
just the right resources to run efficiently, without waste. The
flexibility of distributed SQL makes it an excellent fit for a wide
and ever-changing set of applications and application needs.

Hybrid Cloud and Multi-Cloud
Deployment

The gulf between the functionality of most clouds compared
to on-premises databases forces awkward workarounds and
compromises, creating operational hassles, security exposure,
and added costs.

In addition, cloud lock-in can lead to unacceptable concentra-
tion risks. Distributed SQL behaves as a single logical database
spanning a cluster of servers in your choice of public, private, and
hybrid cloud environments.

Open Source/Open Standards
Open-source licensing and the use of open standards gives users
control and flexibility. A distributed SQL database that uses
open-source licensing and open standards give users the pow-
erful features inherent to distributed SQL — strong consistency,
continuous availability and resiliency, horizontal scalability, and
geographic distribution — along with the advantage of openness.

Security and Compliance
Security is threatened by the fragility of single-server traditional
SQL solutions and the lack of established compliance standards
for weakly consistent NoSQL databases. Distributed SQL offers the
best of both worlds, including advanced security features as a core
part of the underlying design from Day 1.

46 Distributed SQL Databases For Dummies, Yugabyte Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Ease of Migration
Distributed SQL supports established approaches and specific
standards used by traditional SQL databases, making it easy to
migrate apps and data from traditional SQL to distributed SQL —
a common reason why many cloud adoption initiatives fail or take
longer than planned.

Ease of Operations
Look for a distributed SQL database built on a fully modern
architecture that seamlessly delivers high levels of redundancy
and resiliency, dynamic zero-downtime scaling, and flexible
database-as-a-service consumption models along with advanced
automation, powerful application programming interfaces (APIs),
and familiar tools.

Such a database will make operations much easier, reducing toil
for operators and wait times for everyone else.

http://www.yugabyte.com

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright Page
	Introduction
	About This Book
	Icons Used in This Book
	Beyond the Book

	Chapter 1 The Rise of the Modern Data-First Enterprise
	Understanding What Modern Data-First Businesses Need
	Accelerating Digital Transformation
	Distributed SQL: The Modern Transactional Database

	Chapter 2 Where Legacy Transactional Databases Fall Short
	Describing the Problems with Traditional Databases
	Battling Forced Trade-offs and Fragmentation
	Identifying Why NoSQL and NewSQL Don’t Solve the Problem

	Chapter 3 Distributed SQL: Rethinking Transactional Databases
	Understanding the Appeal of Distributed SQL
	Looking Under the Distributed Architecture Hood
	Comparing Distributed SQL to Other Database Types

	Chapter 4 Distributed SQL in Action: Exploring Top Use Cases
	Realizing the Rewards of Database Modernization
	Unlocking Cloud-Native Application Capabilities
	Powering Demanding Edge and Streaming Solutions
	Solving Problems across Industries

	Chapter 5 Measuring the Business Impact of Database Modernization
	Accelerating Innovation with Greater Productivity
	Prioritizing Resiliency as a Key Database Requirement
	Uncovering the Hidden Effect of Efficiency
	Sensing the Safety in Security
	Seeing the Sense in Savings

	Chapter 6 Ten Reasons to Pick Distributed SQL
	Strong Consistency
	Continuous Availability and Resiliency
	Horizontal Scalability
	Geo-Distribution
	Dynamic Workload Optimization
	Hybrid Cloud and Multi-Cloud Deployment
	Open Source/Open Standards
	Security and Compliance
	Ease of Migration
	Ease of Operations

	EULA

Distributed SQL
Databases

